C++ PROGRAMMING
FUNDAMENTALS

‘ : oo ol
. S e * 0.0 0 ® s © - o ol.}o.\. - @) \\\
> 2 e & ® \
. . e o 00 - e 0 @ - LR S \ \
- ’ o € e 9\‘
..O..—&.”..i‘. oo-‘oa.c‘&.. . o, | @ 0o

#

- o S
oo T .. 00 02, ¢, tiine.:' o
— ‘g F . : A B
- o = - - @ - - /‘-,..,- o P S e e .
> -

L ; - ’-- .-’ ﬂ'g.
s 0. 6 R = P4
° ® o= ° e E op S 4 RS A A
» .] S 2 &
@ s & Ao L v
y o LY !]
‘Q\\ @ o ® o
Q'n o @O - - - o o0 e 4.,*@...!.«5.
’. od(__ @ - ‘Q.!. ° o - . S B e ~ ('

"y " ; r N -’-’ ..
s e ! : / J / y
» @ e~ o® 6o reo0 @ . o""’p'ooo:o / / "l
@ ; - ; -'
% S -
\ . -

C++ PROGRAMMING
FUNDAMENTALS

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and disc (the “Work”), you agree that this
license grants permission to use the contents contained herein, including the
disc, but does not give you the right of ownership to any of the textual content in
the book / disc or ownership to any of the information or products contained in
it. This license does not permit uploading of the Work onto the Internet or on a
network (of any kind) without the written consent of the Publisher. Duplication
or dissemination of any text, code, simulations, images, etc. contained herein
is limited to and subject to licensing terms for the respective products, and
permission must be obtained from the Publisher or the owner of the content,
etc., in order to reproduce or network any portion of the textual material (in any
media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and
anyone involved in the creation, writing, or production of the companion disc,
accompanying algorithms, code, or computer programs (“the software”), and
any accompanying Web site or software of the Work, cannot and do not warrant
the performance or results that might be obtained by using the contents of the
Work. The author, developers, and the Publisher have used their best efforts
to insure the accuracy and functionality of the textual material and/or programs
contained in this package; we, however, make no warranty of any kind, express
or implied, regarding the performance of these contents or programs. The
Work is sold “as is” without warranty (except for defective materials used in
manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and
anyone involved in the composition, production, and manufacturing of this
work will not be liable for damages of any kind arising out of the use of (or the
inability to use) the algorithms, source code, computer programs, or textual
material contained in this publication. This includes, but is not limited to, loss
of revenue or profit, or other incidental, physical, or consequential damages
arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book and/or disc, and only at the discretion of the Publisher.
The use of “implied warranty” and certain “exclusions” vary from state to state
and might not apply to the purchaser of this product.

C++ PROGRAMMING
FUNDAMENTALS

Dheeraj Malhotra, PhD
Neha Malhotra, PhD

ﬁ’

MERCURY LEARNING AND INFORMATION

Dulles, Virginia
Boston, Massachusetts
New Delhi

Copyright ©2023 by MERCURY LEARNING AND INrorMATION LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any
way, stored in a retrieval system of any type, or transmitted by any means, media, electronic
display or mechanical display, including, but not limited to, photocopy, recording, Internet
postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION
22841 Quicksilver Drive

Dulles, VA 20166
info@merclearning.com
www.merclearning.com

(800) 232-0223

D. Malhotra and N. Malhotra. C++ PROGRAMMING FUNDAMENTALS.
ISBN: 978-168392-976-5

The publisher recognizes and respects all marks used by companies, manufacturers, and devel-
opers as a means to distinguish their products. All brand names and product names mentioned
in this book are trademarks or service marks of their respective companies. Any omission or
misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the
property of others.

Library of Congress Control Number: 2022950638

222324321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at (800) 232-0223 (toll
free). Digital versions of our titles are available at numerous electronic vendors.

The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace

the book and/or disc, based on defective materials or faulty workmanship, but not based on
the operation or functionality of the product.

Dedicated to our loving parents
and beloved students

CONTENTS

Preface

Acknowledgments

Chapter 1 C++ and Beyond

Introduction
1.1 The Origin of C++
1.2 Why Use C++?
1.3 Various Programming Paradigms
1.3.1 Structural Programming
1.3.2 Procedural Programming
1.3.3 Object Oriented Programming
1.4 C++ Basics
1.4.1 Variables
1.4.2 Data Types
1.4.3 Data Modifiers
1.5 C++ Execution Flow
Summary
Exercises
Theory Questions
MCQ-Based
Practical Application
References
Books
Websites

XU

0 =1 -1 0O DD

viii © CONTENTS

Chapter 2 Basic Play in C++

2.1 Literals, Constants, and Qualifiers
2.2 Stream-Based 10
2.3 Comments
2.4 Operators and Types
2.4.1 Types of Operators in C++
2.5 Type Conversion
2.6 Keywords
2.7 Loops in C++
2.8 Control Statements
2.9 Defining Functions
2.9.1 Why Use Functions?
2.10 Cvs. C++
Summary
Exercises
Theory Questions
MCQ-Based
Practical Questions
References
Books
Websites

Chapter 3 Arrays and Strings

3.1 What is an Array?
3.1.1 Ways to Declare Arrays
3.1.2 Ways to Access Array Members
3.1.3 Traversing a 1D Array
3.2 Operations on an Array
3.2.1 Passing an Array to Functions
3.2.2 Finding the Length
3.2.3 Enumin C++
3.24 Searching
3.3 Multi-Dimensional Array
3.4 Strings
3.5 String Functions
Summary
Exercises
Theory Questions

19

19
20
22
23
23
25
27
28
32
36
36
37
38
39
39
39
41
42
42
42

43

43
43
44
45
45
45
46
47
48
51
52
53
54
54
54

MCQ-Based

Practical Questions
References

Books

Websites

Chapter 4 Pointers in C++

4.1 Introduction
4.9 Pointers: Declaration and Initialization
4.3 Casting and Passing Pointers
4.3.1 Typecasting
4.3.2 Passing
4.4 Using Pointers with Arrays
4.5 Pointer Use
Summary
Exercises
Theory Questions
Practical Questions
MCQ-Based
References
Books
Websites

Chapter 5 Classes in C++

5.1 Class Making
5.2 Constructors and Destructors
5.3 The This Pointer
5.4 Class Methods
5.5 The static Keyword
5.6 Memory Management and Garbage Collection in C++
Summary
Exercises
Theory Questions
Practical Questions
MCQ-Based
References
Books
Websites

CONTENTS © IX

55
56
57
57
57

59

59
59
63
63
64
66
70
71
72
72
72
73
75
75
75

77

77
79
86
87
89
90
92
92
92
93
93
95
95
95

X ¢ CONTENTS

Chapter 6 Inheritance

6.1 Introduction
6.2 Inheritance
6.2.1 Access Specifiers
6.2.2 Inheritance Modes
6.3 Types of Inheritance
6.4 Constructor Calling
6.5 Implementing Inheritance
Summary
Exercises
Theory Questions
Practical Questions
MCQ-Based
References
Books
Websites

Chapter 7 Polymorphism

7.1 Introduction
7.2 Dynamic vs. Static Binding
7.3 Interface and Implementation

7.4 Function Overriding and Overloading

7.5 Friend and Generic Functions
7.5.1 Friend Functions
7.5.2 Generic Functions

7.6 Namespaces

Summary

Exercises
Theory Questions
Practical Questions
MCQ-Based

References
Books
Websites

Chapter 8 Operator Overloading

8.1 Basics
8.2 How to Overload an Operator?
8.3 Overloading Unary Operators

97

97

97

99
101
107
124
125
127
128
128
128
129
136
136
137

139

139
142
145
149
153
153
155
157
159
160
160
160
161
166
166
166

167

167
168
171

8.4 Overloading Binary Operators
8.5 Overloading by Friend Function
Summary
Exercises
Theory Questions
Practical Questions
MCQ-Based
References
Books
Websites

Chapter 9 Structure and Union

9.1 Structure: Declaration and Definition
9.2 Accessing a Structure
9.3 Union
9.4 Differences Between Structure and Union
9.5 Enumin C++
Summary
Exercises
Theory Questions
Practical Questions
MCQ-Based
References
Books
Websites

Chapter 10 Exception Handling

10.1 Errors and Exceptions
10.2 Exception Handling
10.3 Various Exceptions
10.4 Custom Exceptions in C++
Summary
Exercises

Theory Questions

Practical Questions

MCQ-Based
References

Books

Websites

CONTENTS © Xi

174
179
180
181
181
181
182
186
186
186

187

187
190
192
194
195
197
197
197
198
198
214
214
214

215

215
218
220
221
223
224
224
224
225
246
246
246

Xii © CONTENTS

Chapter 11 File Handling

11.1 Files and Streams
11.2 File Operations
11.3 Random Access and Object Serialization
Summary
Exercises
Theory Questions
Practical Questions
MCQ-Based
References
Books
Websites

Index

247

247
250
253
255
256
256
256
257
268
268
268

269

PREFACE

The objective of this text is to emphasize the fundamentals of Object-Oriented
Programming (OOP) as an introductory subject. It is designed for beginners
who would like to learn the basics of the C++ programming language. With
this focus in mind, we present various OOP fundamentals, well supported with
real-world analogies to enable a quick understanding in order to solve specific,
practical problems. This book will serve the purpose of a text/reference book
and will be of immense help especially to undergraduate or graduate students of
various courses in information technology, engineering, computer applications,
and information sciences.

Key Features

= Practical Applications: Real world analogies as practical applications are
given throughout the text to quickly grasp and connect the fundamentals
of C++ programming. This approach, in turn, will assist the reader in
developing the capability to identify the practical problems that could
be efficiently solved through an OOP approach.

= Programs and Output Snippets: To better understand the OOP
fundamentals at a generic level-followed by their implementation
using C++ Programming, detailed implementation codes are discussed
to elaborate real world applications along with their output snippets
throughout the book. This presentation will assist the readers in easily
understanding the subject at conceptual level and their corresponding
implementation.

= Multiple Choice Questions: To assist students for placement-oriented
exams in various IT fields, several exercises are suitably chosen and are
given in an MCQ format.

ACKNOWLEDGMENTS

We are indeed grateful to Chairman VIPS- Dr. S.C. Vats, Vice Chairman VIPS-
Sh. Suneet Vats, Director General VIPS- Dr. Ashwani Kumar Sharma, and
Dean VSIT- Prof. Supriya Madan of our employer institute, i.e., Vivekananda
Institute of Professional Studies (GGS IP University). They are always a source
of inspiration for us, and we feel honored because of their faith in us.

We also take this opportunity to extend our gratitude to our mentors:
Dr. O.P. Rishi (University of Kota), Dr. Sushil Chandra (DRDO, GOI), and
Dr. Udyan Ghose (GGS IP University) for their motivation to execute this
project.

We are profoundly thankful to Ms. Stuti Suthar (SAP Labs), Mr. Sahil
Pathak (TMB), Mr. Deepanshu Gupta (Tech Mahindra Ltd.), Ms. Aditi Vats
(VIPS, GGSIPU) for helping us in proofreading and compiling the codes in this
manuscript.

It is not possible to complete a book without the support of a publisher.
We are thankful to David Pallai and Jennifer Blaney of MERCURY LEARNING AND
INnrorMATION for their enthusiastic involvement throughout the tenure of this
project.

Our heartfelt regards to our parents, siblings and family members who
cheered us in good times and encouraged us in bad times.

Lastly, we have always felt inspired by our readers especially in USA, Canada,
and India. Their utmost love and positive feedback for our four authored titles
of Data Structures using C/ C++/Java/Python, published with MLI, helped us
to further improve the current title.

Dr. Dheeraj Malhotra
Dr. Neha Malhotra
January 2023

CHAPTER

C++ AND BEYOND

Introduction

In this chapter, you will become familiar with the basics of C++, a powerful
programming language used by developers for its easy syntax and concepts.
Many video games, embedded systems, IoT devices, and resource-heavy AI
applications make use of C++. C++ is a general purpose and cross-platform
language that offers a vast collection of libraries to help you program with
ease. Let’s get started.

1.1 The Origin of C++

In 1980, Bjarne Stroustrup, a Danish Computer Scientist working at AT&T
Bell labs in Murray Hill, New Jersey, developed C++, which inherited the
features of C and Simula67 and supported Object Oriented Programming
(OOP). The programming language was originally named “C with Classes,”
as Stroustrup’s main objective was to make use of classes to implement

Simula67
<<

OOP features.

ALGOL 68

Figure 1.1 Programming relat|onsh|ps with C++

2 o C++ PROGRAMMING FUNDAMENTALS

The ++ symbol with C is called the increment operator, which signifies
that the language is an extended version of C. C++ was available outside
Bell Laboratories in 1985, and its first C++ compiler, called Cfront, was
released in 1985. The American National Standard Institute (ANSI) formed
a committee for C++ in 1989. The first draft standards were published in
1995. Programmers are frequently advised to learn C before diving into C+,
but that is unnecessary for using this book. We will learn the core principles
of C++, as well as some programming basics. C++17 is the latest version of
C++ being used.

1.2 Why Use C++?

C++ is often used for its simplicity and OOP facility. Other reasons to use
this language are as follows:

C++ Features

= Simple syntax: As it is derived from C, the syntax is similar and easy to
understand.

= Object-oriented: OOP features like polymorphism, inheritance,
encapsulation, and abstraction are used.

= Platform dependent: Your code will execute only on the operating
system it is designed and developed on.

u Provides memory management: Dynamic memory allocation is

supported by C++.

= Mid-level programming: It is capable of doing low-level programming
tasks, such as for drivers and kernels, and high-level applications like
games, GUI, and desktop apps.

= Vast libraries: You have access to many built-in functions (libraries),
which saves time.

= Compiler-based: Your C++ program won’t be executed without passing
the compilation barrier.

= Structural programming language: Your code is modular, i.e., consisting
of functions, classes, and objects.

C++ AND BEvonD © 3

1.3 Various Programming Paradigms

1.3.1 Structural Programming

Structural programming is a programming paradigm in which the entire
program is broken down into sub-procedures and functions to make it
easier to manage. For example, let’s suppose you need to build a simple
calculator in C++. You might break it into smaller units that perform
different functionalities like addition and subtraction. This approach can
be seen in daily life, too: we often take large tasks and break them down
into smaller ones that are easier to accomplish. Examples of structural
programming languages are C, C++, Java, and C#.

The characteristics of structural programming languages are as follows:
= Modular programming
= Data and functions treated as separate entities
= Program designed using top-down approach
= Procedure (algorithms) gets more attention than the actual data used

= Larger programs are divided into smaller units called functions.

Imperative- Run a list of commands

Structural- Split into modules

Procedural- One command after another

Figure 1.2 Types of paradigms

Consider the following example. The steps needed to make a cup of instant
coffee are as follows:

Step 1. Check for the availability of coffee.
Step 2. If true, find sugar and water or else go back.

Step 3. If true, then mix all three or else go back or leave the coffee sugar
free.

Step 4. Check for the availability of milk.

4 o C++ PROGRAMMING FUNDAMENTALS

Step 5. If true, add milk to black coffee
Step 6. Stop

The above example shows how an algorithm to make coffee follows steps
with decision statements and creates a kind of structure.

Can you think of the advantages and disadvantages of following this
approach? Let us list them.

Table 1.1 Structural programming Advantages & Disadvantages

Advantages Disadvantages

Easy to understand and user friendly Gives more attention to procedure/code

Easy to find errors Data and function treated as separate entities

Machine independent Time-consuming have to convert to machine code

Maintenance is easier as less complex | Sensitive data is not safe

Top-down approach is not applicable when

Works from the top, down
programs are large

1.3.2 Procedural Programming

Procedural programming comes under the umbrella of structural
programming, but the program executes in a particular order, with one
statement after another. It consists of procedure calls, and for a particular
block of code of a procedure, no special flow-alter statements are used.
Examples of such programming languages are Pascal, COBAL, C, and
Fortran.

1.3.3 Object Oriented Programming

Programming data has set limits, unlike the myriad amounts of data that
are generated by us on a daily basis. Broadly speaking, a class encompasses
methods and data grouped together as members (i.e., they are encapsulated).
Hence, objects in C++ store data and have a defined state and behavior
(also known as an instance of a class).

Figure 1.3 Encapsulation

1. Encapsulation

Shielding data from any threat involves binding it together with methods in
objects, and so whenever we need to call upon any functionalities, our data

C++ AND BEvonD © 5

is provided along with them. Look at it like a capsule with all the important
ingredients you might need all in one place. C++ implements this concept
by introducing classes into our program.

2. Data Abstraction

Abstraction involves fetching only the relevant data to the user and hiding
any other details. Consider an example where you go to a restaurant and
place your order. You sometimes get an order number to pick up your
food when the number is called. You are not concerned with the tools or
number of employees working to make your meal or their details. Relevant
information sharing saves time and memory, and this protects our data.

We can implement abstraction in C++ using classes to group data
members and member functions together. This approach will determine
which data member will be accessible to which extent to other entities in
our program.

3. Polymorphism

Polymorphism provides us with multiple forms of a method with different
signatures but the same name. There are two types: runtime polymorphism
and compile-time polymorphism, both of which are implemented in C++
using method overloading and over-riding. Methods can exist in multiple
forms by varying the type of parameters and number of parameters they
take in the signature of the function. When these methods used with same
name but different signature it is called overloading and when used with
same name as well as signature is called over-riding.

Let’s consider the following example:

In Formula 1 Racing, there are 10 teams with 2 drivers each, and the drivers
are provided with the same equipment and car specifications. However, the
result attained by both drivers for their teams always differs as the “method”
(the car) has been “overloaded” in completely different ways (that is, the F1

car exists in different forms).
.| Driver 1 Result

Driver 2 Result ‘

Figure 1.4 Polymorphism

6 o C++ PROGRAMMING FUNDAMENTALS

4. Inheritance

Just as all children inherit certain qualities from their parents and
grandparents, classes in C++ can also inherit certain properties or attributes
from other classes. All you need to learn at this stage is that the class that
inherits from the parent is called the derived class, while the parent class is
called the base class. This promotes the reusability of the code blocks, and
you might not need to define all classes.

Grandparent
Parent

Child

Figure 1.5 Inheritance
Let’s consider an example:

As seen in many industries, nepotism plays a significant role for younger
generations. Let us say that an actor has worked hard to become famous.
This reputation would be passed on to his children when they to enter
the world of cinema. They will do this with considerable ease using their
father’s inherited reputation. In this case, the actor is the base class and his
children are all derived classes.

=) &

Figure 1.6 Message passing

5. Message Passing

C++ AND BevonD o 7

Communication is important for objects in C++, as they might need
to execute some requests from other objects to complete their own task
(function). For successful communication, you need the sender’s and
receiver’s address and information to be sent. For C++ terms, all you
require is the correct object name(receiver), function name, and data.

6. Dynamic Binding

Dynamic binding (or late binding) tells which procedure will be called at
runtime. The code we write in C++ is called the source code and it is saved
with the extension .cpp. The compiler checks each line in the program to
find any errors and notify us about them. The time it takes the program to
execute is called the runtime. That is when the function calls are executed.
The code inside our procedure is not known until execution, hence the
name late binding. In C++, it is implemented using objects.

1.4 C++ Basics

Now that you understand what can be done in C++, let us look at exactly
how it is done. Similar to mathematics, we will learn about what variables
are, as well as the symbols we will use to solve problems.

1.4.1 Variables

Variables in C++ are unique names given to units that hold value within
a defined scope. Naming is done by following certain rules. By following
these rules, you can make your program more understandable to others (as
well to yourself).

The variable declaration means introducing the variable to the program
before it is used anywhere.

A variable definition means the variable is assigned a memory location
and a value. Rules for naming variables in C++ are as follows:

1. It should start with an alphabet
2. It can contain combinations of digits or , letters.

3. It should not contain any whitespaces or special characters (such as !, %,
or #) except underscore(_).

4. It should not contain any C++ reserve words (also called keywords).

8 ¢ C++ PROGRAMMING FUNDAMENTALS

Code: Variable Naming in C++

#include <iostream>
using namespace std;
int main()

{

//variables naming

int a,b; // declared

char ch;

int la; // wrong statement error
char abc;// declared and defined
cout<<"They take value "<<a<<endl;

return O;

Output:

Untitled-3.cpp:9:9: error: expected unqualified-id
int 1la; // wrong statement error

1 error generated.

1.4.2 Data Types

When a variable name is assigned, the variable will hold value, and this
value will be one of the types available in C++.

Data Types

Derived

Primitive User-Defined

int, char etc.

arrays, pointers structure,union

Figure 1.7 Data types

1. Primitive Data Type

These can be used directly to declare your variables.

= Integer: denoted by int and used when you need numeric values. It
ranges from -2147483648 to 2147483647 and takes up 2/4 bytes. One
byte equals 8 bits, and 2432 gives its range of memory, depending on
the compiler.

2.

C++ AND BevonD © 9

Character: used for alphabetic values. The memory space is only 1 byte.
It ranges from -128 to 127 or 0-255 for signed and unsigned char data

types.

Boolean: Some statements require a logical answer, i.e., either true or
false. This is done in C++ using boo1, which stores a Boolean value.

Floating Point: This data type is used for storing decimal values, such as
1.2 or 1.234, up to 7 digits of precision. The keyword f1oat is used for
this and takes up 4 bytes of memory space.

Double Floating Point: This data type is also to store decimal values, but
with 15 digits of precision. The keyword used for the double floating-
point data type is double. Double variables typically require double the
space of floating point variables, i.e., 8 bytes.

Void: “Void” means nothing, containing no value. However, you should
be careful not to confuse it with zero: 0 is a numeric value, while void is
valueless. It is mostly used with a function return type to signify that it
returns no value.

Derived Data Type

This type comprises of pointers and references.

3.

User-defined Data Type

You can also create your own data type depending on what the program
requires. This type encompasses classes, structures, enum, and typedef.

1.4.3

Data Modifiers

The above datatypes can be used directly but within their respective scope.
Modifiers are used to extend the limit of a data type to accommodate larger
values. The keywords used are as follows:

1.

Signed: This is very useful as it stores all positive, negative values, and
even zero.

. Unsigned: This only stores negative values.

. Short: This is used for small integer values and ranges from

-32,767 to +32,767.

. Long: This ranges from -2147483647 to 2147483647 and is used for

larger values.

10 ¢ C++ PROGRAMMING FUNDAMENTALS

Code: Implementing Data Types in C++

//Va
#inc
usin
void

{

// n
}

rious data types and their sizes
lude <iostream>

g namespace std;

main ()

int x=98;

short int sh=1;

long int 1= 34566;
signed int s= -9978;
unsigned int u= 66;
char c="A";

float £=1.98;

double d=9.6666788;
bool b= true;

cout << "Size of int : " << sizeof (int) << " bytes"
<< endl;

cout << "Size of short int : " << sizeof (short int)
<< " bytes" << endl;

cout << "Size of long int : " << sizeof (long int)

<< " bytes" << endl;
cout << "Size of signed int : "
<< sizeof (signed int) << " bytes" << endl;
cout << "Size of unsigned long int : "
<< sizeof (unsigned int) << " bytes" << endl;
cout << "Size of char : " << sizeof(char) << " byte"
<< endl;
cout << "Size of float : " << sizeof(float) << " bytes"
<< endl;
cout << "Size of double : " << sizeof (double)
<< " bytes" << endl;
o0 return statement as void used

Output:

Size
Size
Size
Size
Size
Size
Size
Size

of int : 4 bytes

of short int : 2 bytes

of long int : 8 bytes

of signed int : 4 bytes

of unsigned long int : 4 bytes
of char : 1 byte

of float : 4 bytes

of double : 8 bytes

1.5

C++ aND BevonDp ¢ 11

Table 1.2 C++ Data Types and Domain Range

Data Type Bytes | Range

int 4 | -2,147,483648 to 2,147,483,647
Short int 2 32,768 to 32,767

Long int 4 -2,147,483,648 to 2,147,483,647
Unsigned int 4 0 to 4,294,967,295

Signed char 1 -128 to 127

Unsigned char 1 0 to 255

float 4 +3.4E-38 and +3.4E38

double 8 +1.7E-308 and +1.7E308

Long double 12 | +1.7E-308 and +1.7E308

C++ Execution Flow

Let’s talk about a few basic terms before we move on:

Machine code are instructions that only the computer understands,
written in binary(0,1), and can be directly executed by a CPU.

Assembly code is a low-level language consisting of statements written in
English that can be understood by the programmer.

Debugging means finding the faults or errors in your program to fix
them so the program executes correctly.

A program in C++ executes in four stages, where different tools help us to
make the execution process easier:

1.

Pre-processor

The first event that occurs in a C++ program is that the pre-processor
processes the program before compilation. It includes the header files
and any macros, if defined. It prepares the source code for the later stag-
es of execution.

. Compiler

Now the pre-processed source code passes through the compiler to pro-
duce an object file. The complier translates the programming language
code in C++ into the machine language, and checks for any errors, issuing
warnings about the errors. The object file contains the assembly code.

. Linker

The linker connects the libraries and object files together to generate an
executable file with the extension .exe.

12 ¢ C++ PROGRAMMING FUNDAMENTALS

4. Loader

The loader places your program onto the memory and this is where the
programs actually runs.

Source

code .cpp

Excecutable

.exe file

Output

Figure 1.8 C++ execution flow

Let us write our first program in C++.
Steps to follow:
1. Get a text editor (such as Notepad) to write C++ code and a

compiler(GCC) to translate the C++ code into machine code.

2. Get an IDE (Integrated Development Environment) to edit and
compile your code (such as Code::Blocks, Eclipse, or, in this example,
Visual Studio).

3. In Visual Studio, go to Folder>File>new. cpp and save the file before
you start coding.

4. Click on the right-most run symbol, which shows you options to debug
or run the file to get output on the code terminal.

titled-3.cpp X D v & (1) -

Debug C/C++ File
Run Code
Run C/C++ File

Figure 1.9 Visual Studio code options

C++ AND BevonD © 13

5. Another way to run code is to type it into Notepad and then save it as a
.cpp file. Open your command prompt terminal and type the run >gcc
filename.cpp command to see output.

Hello New You Program
Code: First C++ Program
#include <iostream>//pre processor

using namespace std;//libraries used

int main() {//first block that runs

//
cout << "Hello new you!!";//your first output
return 0;// as the main method not void

Output:

Hello new you!!

Summary

= C++ is a compiled, general-purpose, case-sensitive, and free-form
programming language that supports procedural, object-oriented
programming.

= C++ was developed by Bjarne Stroustrup in 1980 at Bell Labs.

= There are programming paradigms, such as procedural, structural, and
object-oriented.

= C++ has OOP features, such as polymorphism, inheritance, data
encapsulation, abstraction, message passing, and late binding.

= We learned about C++ data types, data modifiers, and variables.
= We looked at the ranges for int, char, and long int.
= We discussed working with a compiler and debugger.
= We considered the stages of C++ program execution.

= We wrote our first program in C++ using simple steps.

14 « C++ PROGRAMMING FUNDAMENTALS

Exercises

Theory Questions
1. What are the features of C++? Why do we need to learn C++?
2. List four practical field applications of C++.
3. Differentiate between types of programming paradigms.

4. Explain OOP concepts with valid examples.

5. List the rules for naming a variable. Identify the valid variable names

from the following list:

a. _thisis2

b. 24Hours

c. Name@dune

d. Formulal

e. _ aditi

f. Meine#Name
6. What are the tools used in C++ program execution?
7. Differentiate between compiler and debugger?
8. How exactly does a C++ program execute?

MCQ-Based

1. Who is the original creator of the C++ language?

a. Dennis Ritchie

b. Ken Thompson

c. Bjarne Stroustrup

d. Brian Kernighan

2. C++isa___ type of language.
a. high-level

b. low-level

C++ AND BevonD © 15

c. middle-level

d. None of the above

3. Which of the following symbols can be used to name a valid variable?
a. %
b.

C. *

d. All of the above

4. Structure is what kind of data type?
a. Built-in
b. Derived
c. User-defined

d. None of the above

5. Which of the following features are supported by C++?
a. Encapsulation
b. Inheritance
c. Polymorphism
d. All of the above

6. What value does void hold?
a. Not defined
b. Null
c. 0
d. None of the above

7. Inside a class, the declared data members are known as
a. data
b. object and data
c. members

d. None of the above

16 » C++ PROGRAMMING FUNDAMENTALS

8. What is the output of following C++ program?

#include <iostream>
using namespace std;
int main ()
{

double i;

i =15;

cout << sizeof (i);
return 0;

}
a.2

b. 3
c. 4
d. 8

9. The declaration of a variable means to it?

a. introduce
b. delete
c. give value to
d. use

10. Object-oriented programming employs a programming ap-
proach.
a. top-down
b. procedural
c. bottom up

d. All of the above

Practical Application
1. Write a program in C++ to check the upper and lower limits of an integer.

2. Write a program in C++ to print your name and details on separate
lines.

3. Write a program in C++ to find the size of the following variable: abc.

C++ AND BevonDp © 17

4. Write a program in C++ to find the sizes of various data types and print

them.

5. Write a program in C++ to display the use of naming variables and their

types.

6. Write a program in C++ to check whether variable 234Mine exists.

MCQ

References

Books

B. Stroustrup, The C++ Programming Language (4th Edition),
(Addison-Wesley Professional, 2013).

K. R. Venugopal, Mastering C++ (2nd Edition), (McGraw Hill
Education, July 2017).

= Y. Kanetkar, Let Us C++, (BPB Publications, September, 2020).

Websites

Learn CPP, accessed May 2022, hitps://www.learncpp.com

Silly Codes, accessed May 2022, hitps://sillycodes.com

Codes Cracker, accessed May 2022, hitps://codescracker.com

Geeks For Geeks, accessed May 2022, https://www.geeksforgeeks.org
Udacity, accessed May 2022, https://www.udacity.com

Scaler, accessed May 2022, https://www.scaler.com

C Plus Plus, accessed May 2022, https://cplusplus.com

CHAPTER

Basic PLay IN C++

2.1 Literals, Constants, and Qualifiers

Often while coding, your program will need a value that will not change
throughout the program’s life, such as the value of pi or any basic values
you wish not to manipulate. A fixed value that may not be changed is called
a constant. Literal constants (or just literals) are unnamed values used
directly in our code. They are constants because their values cannot be
changed until you rewrite the program and compile it again. Just like objects
have a type, all literals have a type. The type of a literal is assumed from
the value and format of the literal itself. Character literals are enclosed in
single quotes. A character literal can be a plain character, escape sequence,
or universal character. A special character with a \ at its beginning has a
specific meaning and performs a certain function.

20 ¢ C++ PROGRAMMING FUNDAMENTALS

Table 2.1 Escape characters

Escape Sequence Meaning

AN\ \ character

\' ' character

\" " character

\? ? character

\a Alert or bell
\b Backspace

\f Form feed

\n Newline

\r Carriage return
\t Horizontal tab
\v Vertical tab

A qualifier is a keyword that is applied to a type, making it into a qualified
type (this is much like using const int as a qualified type, which means
the value is an integer that will not be changed throughout the program).
Code: Use of escape Sequences

#include <iostream>
using namespace std;

int main () {
cout << "\nHello\tProgrammer\n\n ";
return 0O;

Output:

Hello Programmer

2.2 Stream-Based 1O

In C++, for the user to enter values, we use input streams; here, we use the
term stream to refer to a group of bytes that can be accessed sequentially.
There are two different types of streams. Input streams are used to hold
input from a user, such as the information that comes from a keyboard. For
example, the user might press keys on the keyboard, and all these keystrokes
are saved in the input stream to be used later when the program itself
requires it. Output streams are used to showcase output using a monitor, a
file, or a printer. For example, you may need a printout, but the printer is

Basic Pray in C++ » 21

currently printing another document, so your data/file waits for its turn to
be given as output. To able to use all these functionalities in your C++ code,
you need to include the iostream header file, which provides with a whole
hierarchy of classes (multiple inheritance) to make use of all I/O classes.

Figure 2.1 10Stream

In this section, you will work with iostream; the iostrean class is derived
from ios_base. The symbols << and >> are special operators. The istream
class is for input streams. The extraction operator (>>) removes values from
the stream created when the user presses keys. The ostream class is for
output streams, and the insertion operator (<<) is used to put values in the
stream to be displayed when asked on output devises like monitors. The
iostream class can handle both input and output streams, whether it is the
user pressing random keys or an alert message to the user not to do so. This
is all accomplished through one class.

The standard stream is a stream provided to your computer program by
its own environment. C++ comes with the following predefined standard
stream objects.

1. cin is an istream class that uses standard input keys for fetching values.

2. cout is an ostream class that uses standard output, such as displaying
your result or message on the terminal.

3. erris an ostreamn class that uses the standard error.

4. clog is an ostream class that uses the standard unbuffered output.

cin and cout are commonly used at this stage, so be careful to not confuse
them with other operators.

Code: Use of I/O streams

#include <iostream>
using namespace std;

22 o C++ PROGRAMMING FUNDAMENTALS

int main() {
char ch= 'A';
int a =9,b=10,c;
cout << "Value as output is : " << ch<< a+b<<endl;
cout<< "Enter your input integer "<<endl;
cin>>c;
cout<< "You entered "<<c<<endl;

Output:

Value as output is: Al9
Enter your input integer
3

You entered 3

Code: Use of I/O streams

#include <iostream>
using namespace std;

int main() {
char ch= 'A';
int c;
cout<< "\nEnter your input integer "<<endl;

cin>>c;
cout<< "\nYou entered "<<c<<endl;
cerr << "Error message : " << ch << endl;
clog << "Error message : " << c << endl;
}
Output:

Enter your input integer
45

You entered 45
Error message : A
Error message : 45

2.3 Comments

Commenting in your program will help you keep track of how your program
works; program comments serve as notes for future reference, as well.

Basic PLay IN C++ ¢ 23

These are only visible to the program and result in no output change on
the terminal.

You can include a single line or multiline comment:

= The /% (a slash followed by an asterisk) are special characters; after you
type /%, you write your comments (consisting of any combination of
characters), and follow them with the #/ characters. This results in a
multi-line comment.

= For a single-line comment, you do not need the ending characters:
the // (two slashes) are followed by your comment (consisting of any
combination of characters).

Code: Writing Single-Line and Multi-Line Comments

#include <iostream>
/* this is a multiline comment
add any notes you need here
vamios!*/
using namespace std;
//single line comment made like this
int main () {

cout<< "\nAdding comments "<<endl;

Output:

Adding comments

2.4 Operators and Types

To perform mathematical operations such as multiplication and addition,
we need numbers. We also need operators and operands. Consider the
equation 6+7 = 13: the + is the operator, and 6 and 7 (integer values) are
our operands.

2.4.1 Types of Operators in C++

= Unary operators take only one operand, like -8, which signifies the value
of negative 8. The ++ operator is an increment operator acting and
modifying one value at a time.

24 - C

++ PROGRAMMING FUNDAMENTALS

Binary operators take in two operands, just as in the mathematical
equation where we needed sum of 6 and 7. The insertion (<<) and
extraction (>>) operators are also binary operators.

Ternary operators work on three operands.

C/C++ has many built-in operators and can be classified into 6 types:

1

. Arithmetic operators are simple and well-known (+, -, *, /, %,++,—).

Here, % does not mean “percentage,” but “modulus.”

. Relational operators are used for the comparison of the values of two

operands (i.e., to check equivalence using greater than or less than, such
as ==, >=,and <=)

. Logical operators are used check for conditions/constraints or

complements, giving a result as either true or false in binary 1 or 0.

. Bitwise operators are used to perform bit-level operations on operands.

Any operands you have must first be converted to bit form before
applying logic such as AND or OR.

. Assignment operators are used to assign value to a variable.

. Other operators can be used, such as sizeot, which finds the size of

datatypes.

Remember the BODMAS rule: Brackets, Orders, Division, Multiplication,
Addition, and Subtraction. The compiler follows the order shown in
Table 2.2. Two types of precedence occur in C++ when you encounter an
operator i.e. Precedence and Associativity. Here precedence of operator is
increasing from bottom to top of the table 2.2 and associativity is referred
when two operators of same precedence occur in an expression.

Table 2.2 Types Of Operators with Precedence and Associativity

Type Operator Associativity
Postfix Of->.++-- Left to right
Unary + -~ ++ - - (type)* & sizeof Right to left
Multiplicative #/ % Left to right
Additive +- Left to right
Shift << >> Left to right
Relational <<=>>= Left to right
Equality === Left to right

Basic PLay IN C++ ¢ 25

Type Operator Associativity
Bitwise AND & Left to right
Bitwise XOR A Left to right
Bitwise OR | Left to right
Logical AND && Left to right
Logical OR I Left to right
Conditional P Right to left
Assignment = +=-= #=/= P=>>= <<= &= "=|= | Right to left
Comma , Left to right

Code: Use of Arithmetic Operators

#include <iostream>
using namespace std;

int main () {

int a, b;

a = 78;

b = 25;

cout << "a + b = " << (a + b) << endl;
cout << "a - b = " << (a - b) << endl;
cout << "a * b = " << (a * b) << endl;
cout << "a / b = " << (a / b) << endl;
cout << "a $ b = " << (a % b) << endl;

return 0;

Output:
a t+ b =103
a-b 53
a * b = 1950
a/ b=3
a %$b=3

2.5 Type Conversion

The process of converting a value from one type to another type is called
type conversion; there are two kinds of type conversion, implicit and explicit.

26 ¢« C++ PROGRAMMING FUNDAMENTALS

Implicit Conversions

= Done by the compiler on its own using intelligence, without any help

from the user.

= Like if a datatype takes a new value different than the present one, so it
upgrades it to the value to adjust without giving any errors.

Code: Implicit Conversion

#include <iostream>
using namespace std;

int main () {
int a = 34; // integer type
char b = 'a'; // character type
a =a + b;//seems illegal butt
float ¢ = a + 1.0;
cout << "a = " << a << endl
<< "b = " << b << endl
<< "¢ = " << c << endl;
return 0;
}
Output:
a = 131
= a
c = 132

Explicit Conversions

= It allows us to explicitly tell the compiler to convert a value from one
type to another type, and any fault is our responsibilities.

= We will use the static_cast operator- static_cast<new_type>(expression).

Code: Explicit Conversion

#include <iostream>
using namespace std;

int main ()

{

double d = 1.6;
int sum = (int)d + 5;
cout << "Sum = " <

sum;

return 0;

Output:

Sum =

2.6 Keywords

Basic PLay IN C++ o 27

Keywords are reserved words with a special meaning associated with them.
Therefore, they cannot be used for other purposes in C++ programs. C++
reserves a set of 92 words.

Here is a list of all the C++keywords.

alignas
alignof
and

and eq
asm
auto
bitand
bitor
bool
break
case
catch
float
for
friend
goto

if
inline
int
long
mutable
namespace
new
extern
false
do

not

not eq
nullptr
operator
or

or eq
private

bitand

bitor

bool

break

case

catch

char

char8 t (since C++20)
charlé t

char32 t

class

compl

concept (since C++20)
const

consteval (since
C++20)

constexpr

constinit (since
C++20)

const cast

continue

co_await (since C++20)
co_return (since
C++20)

co yield (since C++20)
decltype

default

delete

double

dynamic cast

else

enum

explicit

export reinterpret cast
requires (since C++20)
return

short

signed
sizeof
static
static assert
static cast
struct
switch
template
this

thread local
throw

true

try

typedef
typeid
typename
union
unsigned
using
virtual

void
volatile
wchar t
while

Xor

Xor eq
public
register
protected

28 ¢ C++ PROGRAMMING FUNDAMENTALS

2.7 Loopsin C++

Not every program you write will be unique. You may have a block of code
that has to repeated until a specified condition is satisfied, and that is what
loops are for in C++. Let us consider an example of printing dates of a
particular month (June, in this case). June has 30 days, with dates from
1-30, so we write the program as follows:

#Ie <iostream>

int main ()
{
cout << "June!"™;
cout << "1 2 3456 78 910 11 12 13 14 15 16 17 18 19
20......P1ls No";
return 0O;

}

Let us examine some of the loops available for this program.

For Loop

We can print the dates in our date program using a for loop. The general
syntax for a for loop is as follows:

for (initialization; condition; end condition)
{
//statement or for body

initialization

condition

end condition
Figure 2.2 Flow diagram (for loop)

Let’s consider the steps in the loop:

1. The initialization is your starting position; in our date example here, it is
the first date of the month.

Basic PLay IN C++ « 29

2. The second part is where the condition is checked to able to enter the

for loop.

3. Either the terms satisfying the other statements execute or the program
comes out of the loop (i.e., it terminates).

4. Lastly, the end condition is used to change the initialization for the next
round of loops, often called the next iteration. This usually involves an
increment/decrement operation.

Try the following code to print June dates:

#include <iostream>

int main ()

{
for (int count= 1; count <= 30; ++count)
std::cout << count << ' Y,

return 0;

}

Output:

1234567891011 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 %

Here is another example of a for loop that helps us see the inner working
of for loops:
for (;;)

statement;

Output:

The result of this code is an infinite loop that needs to be terminated.

While Loop

A for loop might be too complex for our program. We do have a simpler
loop that involves having only one condition inside of it. The syntax for a
while statement is as follows:

while (condition)

{

statement; }

30 ¢ C++ PROGRAMMING FUNDAMENTALS

condition

statement

Figure 2.3 Flow diagram (while loop)

Inside the while loop, as long as the condition is true, we do the work.
Otherwise, we exit the loop. In the next example, we use the end condition
and start expression inside the while loop’s body for the next iteration.

#include <iostream>

int main ()

{

int count=1;
while (count <= 30)
{

std::cout << count << ' Y;
++count;

std::cout << "done!";

return 0O;

while (true)

{

// this loop will execute forever

Basic Pray in C++ 31

Do While Loop

The do while loop is similar to the while loop, but here, the work you need
to repeat will execute at least once. The syntax for a do while loop is as
follows:

do

{statement; // can be a single statement or a compound statement}
while (condition);

Figure 2.4 Flow diagram (do while loop)

Code: Do While Loop Example

#include <iostream>

int main ()
{
int i = 1;
do{
std: :cout<<i<<"\n";
i++;
} while (i <= 5) ;
return 0;

32 o C++ PROGRAMMING FUNDAMENTALS

Output:

aos W N

Nested Loops

A nested loop is a loop within a loop, and this structure allows us to perform
many functions more efficiently.

#include <iostream>
using namespace std;
int main () {

for (int i = 1; 1 <=3; ++i) {

for (int j = 1; j <=1i; ++3)
{
cout << "x";

}

cout << "\n" << endl;

}

return O;

}
Output:
*

* %
* k%

2.8 Control Statements

Controlling where your program leads is a quality of a good programmer. In
C++, there are statements and types that change the normal flow of code.

A conditional statement is a statement that specifies whether some
associated statement(s) should be executed or not.

if (condition)
statement;

elseif (condition)
statement;

Basic PLay IN C++ ¢ 33

else
statement;

condition

condition

statement

Figure 2.5 Flow diagram (if-else)

#include <iostream>

int main ()
{

std::cout << "Enter a number: ";
int x{};
std::cin >> x;

if (x > 10)

std::cout << x << " is greater than 10\n";
else

std::cout << x << " is not greater than 10\n";

return 0;

}

Jump statements can be used to either pass by a block of code or terminate

before the last actual statement of the program. Some of the jump statements
and their uses are as follows:

= continue: This statement will skip the rest of the loop body and
continue to the iteration. It will test the condition again before iterating.
This statement can be used inside for loop or while or do-while loop.
Code: Continue Statement

#include <iostream>

34 o C++ PROGRAMMING FUNDAMENTALS
using namespace std;

int main() {
for (int i = 0;
if (1 == 4) {
continue;
}
cout << i << "\n";

}

return 0;

i < 6; i++) {

Output:

a w N = O

= break: Breaking out of a difficult and unwanted situation is important
for the code’s “health,” so this statement terminates the loop and
executes the next statement.

#include <iostream>
using namespace std;

int main() {
for (int i = 0; 1 < 6; i++) {
if (1 == 4) {
break;
}
cout << i << "\n";

}

return 0O;

Output:

w N = O

Basic PLay IN C++ ¢ 35

® return: You might have noticed this code in the snippets presented
here. There is a return statement and int, so the code returns an
integer value.

= goto: Whatif your needed body of code is far away from the ongoing
loop? In this situation, use goto to jump directly that block of code. Use
this statement with caution.as you might loose flow control of the code
and it would be difficult to maintain the code.

Syntax using goto:

goto label name;

label name:

"Odd"

Figure 2.6 Flow diagram (goto)

#include <iostream>
using namespace std;

int main()
{
int n = 88;
if (n % 2 == 0)

goto placel;
else
goto place2;

placel:
cout << "Even" << endl;
return 0;//return statement used

36 ¢ C++ PROGRAMMING FUNDAMENTALS

place2:
cout << "Odd" << endl;
}

Output:

Even

2.9 Defining Functions

In C++, many times, whole code blocks of 30-40 lines are repeated. When
this occurs, we can use a function, which can accept different inputs and
process them with the same code to obtain different results. If you recall
our Formula 1 example, the teammates with different sets of skills obtained
completely different results; in this instance, the function is like the engine
(the common link) that is processed to yield two results.

2.9.1 Why Use Functions?

= They reduce code redundancy: one single block of code can be called
upon many times, wherever it is needed.

= Easy maintenance, as only one location serves as the function’s “home.”
= Modularity makes code easy to understand and control.

= Abstraction is supported, as library functions can be used without the
extra work of copying the whole function.

C++ has two types of functions: built-in or programmer-defined. In a
programmer-defined function, blocks of code for a specific task are given
a unique name that is used when the function is being invoked (called into
action).

Function Declaration

The function declaration introduces the function and what it is capable of
doing provided the necessary parameters. The compiler gets to know the
signature of the function and verifies when it is being called.

The syntax for this is as follows:
return type function name ([argl type argl name, ...]) { code }
Passing Parameters to Functions

The parameters passed to a function are called actual parameters and the
parameters received by a function are called formal parameters.

Basic Pray IN C++ o 37

There are two major ways to pass parameters:

= Pass by Value: Here, the values of the actual parameters are passed
to the function’s formal parameters. Different memory locations are
provided to both the actual and formal parameters, so any changes made
inside the functions are not permanent and are valid inside the function

body only.

= Pass by Reference: Here, the addresses of the values are passed and
so two copies do not exist. The changes remain permanent inside and
outside the body of the function. Both the actual and formal parameters
are stored in the same memory location.

Code: Pass by value function

#include <stdio.h>
int max(int a, int b)
{

if (a > b)

return a;

else

return b;
int main(void)

int n = 10, m = 20;
int mx = max(n, m);

printf ("\nmax is %d\n", nmx);
return 0;

Output:

max is 20

2.10 Cyvs. C++

Table 2.3 C & C++ Differences

C C++
C was developed by Dennis Ritchie in around C++ was developed by Bjarne
1969 at AT&T Bell Labs. Stroustrup in 1979.
C uses procedural programming. C++ supports both procedural and OOP
paradigms.

(Contd.)

38 ¢ C++ PROGRAMMING FUNDAMENTALS

C C++

Cis a subset of C++. C++ is superset of C.

C does not support polymorphism, encapsulation, | C++ has support for polymorphism,

and inheritance. encapsulation, and inheritance.

C does no data hiding and can be easily C++ encapsulation hides the data to

manipulated. ensure that data structures and operators
are used as intended.

Built-in data types are supported. Built-in as well as user-defined data
types are supported in C++.

C is a function-driven language and more C++ is an object-driven language.

attention given to the function.

The header file used is stdio.h. Tostream.hisusedin C++.

C does not support function and operator C++ supports both function and

overloading. It also does not have the namespace | operator overloading; it has the

feature and reference variable functionality. namespace feature and reference

variable functionality.

Functions in C are not defined inside a structure. | Functions can be defined inside a

structure.
Reference variables are not supported in C. Reference variables are supported in
C++.
The namespace feature is not available. Namespaces provided by C++.
The virtual and friend functions are not supported | The virtual and friend functions are not
by C. supported by C++.
Direct exception handling is not supported. Exception handling is supported.
Memory management occurs through the New and delete operators are used for
malloc () and calloc () functions memory allocation and deallocation.
Summary

= Literal constants (literals) are unnamed values used directly in code.
= The iostream class can handle both input and output streams.

= cinis an istream class that uses the standard input keys for fetching
values. cout is an ostream class that results in the standard output.

= The types of operators in C++ are unary operators (which take only one
operand), binary operators (which take in two operands), and ternary
operators (which work on three operands).

= The process of converting a value from one type to another type is called
type conversion.

Basic Pray IN C++ « 39

C++ reserves a set of 92 words for its own use called keywords.

C++ has loops, such as for, while, and do while, to perform repeated
tasks.

The function definition and declaration are done with the signature to
call later.

C++ is an improvement over C, and although there are basic
similarities, they have many differences.

Exercises

Theory Questions

1.

N & v b WO N

o2}

10.

11.
12.

MCQ-

1.

Compare C &C++.

. Define literals and constants in C++.

. Discuss various types of operators in C++.

. How is type conversion possible in C++?

. Define all the io-based stream classes in C++.
. What does int actually tell in a program?

. Which is better, a for or while loop? Discuss your answer using

examples.

. Isado while loop more efficient than a normal while loop?

. Define various control statements with examples.

Is it better to use if-else or goto? Please support your reasoning with
examples.

Discuss the procedure of using functions in C++.

Why do you think modular programming is preferred among program-
mers?

Based
Which of the following features is not provided by C?
a. Pointers

b. Structures

40 o C++ PROGRAMMING FUNDAMENTALS

c. References

d. Functions

2. Which of the following types is provided by C++ but not C?
a. int
b. bool

c. float

d. double

3. Which of the following is an entry-controlled loop?
a. for
b. while
c. do-while

d. both while and for
4. Which of the following operators has left-to-right associativity?
a. Unary operator
b. Logical not
c. Array element access

d. addressof

5. What is the size of a character literal in C and C++7?
a.4and 1
b. 1 and 4
c.land 1
d. 4 and 4

6. What is std in C++7?
a. std is a standard class in C++
b. std is a standard namespace in C++
c. std is a standard header file in C++

d. std is a standard file reading header in C++

Basic Pray in C++ « 41

7. What does \a escape code represent?
a. alert
b. backslash
c. tab
d. form feed

8. What does \t escape code represent?
a. alert
b. backslash
c. tab
d. form feed

9. Which of the following is not a keyword in C++?
a. int
b. break
c. object

d. void

10. Which will make a permanent change?
a. pass by value
b. pass by reference
c. pass address

b. bothb & ¢

Practical Questions
1. Write a program in C++ to implement operators.
2. Write a program in C++ to print your hobbies on separate lines.
3. Write a program in C++ to print the sum of three numbers.

4. Write a program in C++ to add, multiply, and subtract two numbers
from user-given inputs.

5. Write a program in C++ to calculate the volume of a cylinder with all
dimensions entered by the user.

42 o C++ PROGRAMMING FUNDAMENTALS
6. Write a program in C++ to find the area and perimeter of a rectangle,
square, and circle, with all dimensions entered by the user.
7. Write a program in C++to swap two numbers using a function.

8. Write a program in C++ to convert temperature from Celsius to
Fahrenheit.

9. Write a program in C++ to find the maximum of five numbers entered
by the user.

10. Write a program in C++ to find the total and average of four numbers
the user enters.

References

Books

= B. Stroustrup, The C++ Programming Language (4th Edition),
(Addison-Wesley Professional, 2013).

= K. R. Venugopal, Mastering C++ (2nd Edition), (McGraw Hill
Education, July 2017).

= Y. Kanetkar, Let Us C++, (BPB Publications, September, 2020).

Websites

Learn CPP, accessed May 2022, hitps://www.learncpp.com

Geeks For Geeks, accessed May 2022, https://www.geeksforgeeks.org

Word Press, accessed May 2022, https://wordpress.com
Code 2 Flow, accessed May 2022, https://codeZflow.com
Silly Codes, accessed May 2022, https://sillycodes.com

CHAPTER

ARRAYS AND STRINGS

3.1

What is an Array?

3.1

An array is like a storage facility: it allows you to keep similar data types
under one “roof,” identified by one name. Items stored inside an array can
be integers, characters, and strings. Whatever you wish to group together,
you can using an array. Let us see how they are declared and initialized.

N

Ways to Declare Arrays

Datatype array name[array sizel; declared by giving the size

Datatype array name[]={elementl, ele2..}; declared by
initializing the elements

Datatype array name[array size]={elementl, ele2..}; declared
by initializing the elements and size

Datatype array name[array_index]= ele3; assigning an element to a
particular index

Here, the [] subscripting operator is used so the compiler knows it is an
array; this is followed by similar types of elements, with an index starting
from o (i.e., the first element of any array is always assigned index 0, arr (0],
and the length of an array is n-1, where n denotes the total number of
elements). Let’s consider an example. Try visualizing an array as a passenger
train with three coaches, one behind the other, with ticket numbers assigned

44 + C++ PROGRAMMING FUNDAMENTALS

from 0 to 2. The array named Train has three coaches with the indexes as

shown in Figure 3.1.

3.1.2

Train (0)

Train (2) |

Figure 3.1 The “train” array example

Ways to Access Array Members

Array elements stored in contiguous memory locations are accessed

sequentially, too.

The indexing is important for extracting a particular element.

The element at index 0 also can be said to be a pointer to the array

name.

If you are working with a static/fixed array, then last element is extracted
uﬁngindex[n—l].

For dynamic arrays, the size is fixed at runtime, so use the
array.length() method to determine the exact size and indexing.

Code: Train and Coaches Array Example

#include <iostream>

int main ()

{

Output:

int train[3]={10,11}; //

train= 12;
std:
std:
std:
std:

:cout
:cout
:cout
:cout

return O;

<<
<<
<<
<<

"\nElements

"Elements 1:

"\nElements
"\nElements

Elements in Train are

Elements 1:

Elements 2:11

Elements 3:

10

12%

declare three coaches

in Train are\n";
"<<train[O0];

2:"<<train;

3: "<<train;

ARRAYS AND STRINGS © 45

3.1.3 Traversing a 1D Array

Here, 1D refers to a one-dimensional array which you can easily traverse
using the loop statements for and while to reach and fetch array elements,
as well as enable the user to input array elements at the particular index.

Code: Creating a 1D Array

finclude <iostream>
using namespace std;
int main() {

int num array[6];
cout << "Enter six numbers: " << endl;
for (int 1 = 0; 1 < 6; ++1i)
{
cin >> num_array[i];//take elements from user
}
cout << "The numbers are: ";
for (int j = 0; j < 6; ++j) |

cout << num_arrayl[j] << " ";// displaying user array
}
return 0;
}
Output:
Enter six numbres:
12
79
45
33
11
23

The numbers are: 12 79 45 33 11 23

3.2 Operations on an Array

Now that we have learned about making arrays, we can perform various
operations on them.

3.2.1 Passing an Array to Functions

Functions are very useful, but you can pass array elements that are not
needed, which creates a problem: imagine passing thousands of such

46 * C++ PROGRAMMING FUNDAMENTALS

elements! You can avoid this situation by only passing the name of the array,
which acts as a pointer to the first element and whole array. It is important
to ensure that the function signature indicates it is an array by using one of
the following:

® int func(int array name[]){ //body }
® int func(int array name[array size]){ //body }

® int func(int *array name) { //body }

Code: Passing an Array

#include <iostream>

int ecoach (int train[], int s)
{

int i,price=0;

for(i = 0; i < s; i++4)

price += train [i];

return price;

}

int main ()

{
int price,s;
int train[3]1={1050,1100};

std::cout << "How many passengers ";
std::cin >> s;

price = coach (train, s);

std::cout << "\nYour bill is:"<<price;
return 0O;

}

Output:

How many passengers 3
Your bill is: 2150 %
HOw many passengers 3
Your bill is:2150%

3.2.2 Finding the Length

It is important to determine the exact length of a dynamic array as entered
by the user, because the size might change midway through the program.

ARRAYS AND STRINGS © 47

This can be done using the sizeof method (which gives us the number of
bytes in a particular datatype) by passing the name of the array.

Code: Using sizeof to Determine Array Length

#include <iostream>
using namespace std;
int main ()
{
int numbers(]={ 0,1,1,2,3,4,5,6,7,7};
cout << sizeof (numbers)/ sizeof (numbers[0])<< '\n';//gives
number of elements

return 0;

Output:
10

3.2.3 Enumin C++

You can make your own datatypes and group them together (like the
months). Enumeration in C++ helps the user define data types for versatility.
Keep in mind that you can change the indexing midway, as shown in the
following code example where “Carlos” (carlos) gets the position value 10,
as it succeeds 9.

The syntax for enumeration is as follows:
enum enum Name {elements..,..,};
Code: Enum Example

#include <iostream>
using namespace std;
enum drivers {checo,max,gasly,lewis,yuki=9,carlos};
int main ()
{
drivers dl1,d2; //here data type is drivers and variables
are dl and d2

dl = carlos ;

d2= gasly;

cout << "\nDriver is: " << dl<<endl;//their position in enum
cout << "\nDriver is: " << d2<<endl;

return 0;

48 o C++ PROGRAMMING FUNDAMENTALS

Output:

Driver is: 10
Driver is: 2

3.2.4 Searching

Accessing each and every element of an array by index (called ¢traversing) is
not efficient for large arrays, so we should work with an algorithm to search
for the element we are looking for. These search methods are as follows.

Linear Search

In a linear search, we sequentially search for the element needed by
traversing through the array and checking whether the search element
matches the array element.

Algorithm for a Linear Search

1. Start.

. Take the size and element input from a user if the array is not given.
. Input the search element from the user.

. Initialize the for loop from i=0 to index size-1.

. Use a nested if loop for the search element == array[i].

. If the result is true, then a match is found; break out of the loop.

. If the result is false, then execute the else part of the code.

W N O »nn A W N

. Stop.

Code: Example of a Linear Search

#include<iostream>
using namespace std;
int main ()
{
int size,e,flag=0;
cout<<"\nGive the size of the array "<<endl;
cin>>size;
int arrayl[sizel;
cout<<"Enter the elements of the array "<<endl;
for (int 1=0;i<size;i++)
{

cin>>arrayl[il];

ARRAYS AND STRINGS © 49

}

cout<<"What do you wish to search for"<<endl;
cin>>e;

for (int 1=0;i<size;i++)//traverse array

{

if (array[i]==e)//check with element to match
{
flag=i;
break;
}
}
if(flag)
cout<<"Element "<<e<<" is at index "<<flag;
else

cout<<"Element "<<e<<" is not present\n";

return 0;

Output:

Give the size of the array

4

Enter the elements of the array
11

23

66

77

What do you wish to search for
88

Element 88 is not present

You can also easily find the index at which the search element was found by
making a flag that is false at the start and assigning the value 1 to it inside
the irf statement.

Binary Search

In this search algorithm, we are provided with a sorted array from elements
placed in order from the minimum to maximum. Now, the work is divided
in half by finding the midpoint about which the next half is found. The
program checks whether the search element is greater or smaller than
the value being searched for, and this process is repeated until the array
becomes empty and we find the matching element.

50 ¢ C++ PROGRAMMING FUNDAMENTALS

Algorithm for a Binary Search

1. Start.
2. Take the size and element input from the user if the array is not given.
3. Input the search element from the user.

4. Call the binary search function and pass the array, size, firstindex, and
lastindex.

5. Execute the nested if loop search element == array[mid] or<
array[mid] Or> array[mid].

6. If the result is true, then the match is found, return mid.
7. If the result is false, then return 0 and exit the loop.

8. Stop.

Code: An Example of a Binary Search

#include<iostream>
using namespace std;
int binarySearch (int arrayl[], int a, int b, int s) {
if (a <= Db) {
int mid = (a + b)/2;
if (array[mid] ==s)
return mid ;
if (array[mid] > s)
return binarySearch (array,a, mid-1, s);
if (array[mid] < s)
return binarySearch (array, mid+1l, b, s);
}
return 0;
}

int main(void) {

int arrayl[] = {23,67,45,11,33,44,55};
int size = sizeof (array)/ sizeof (arrayl[0]);
int s;

cout << "Enter the element to search: \n";
cin >> s;
int flag = binarySearch (array, 0, size-1, s);
if(flag) {

cout<< s <<" found at index "<< flag <<" ";
lelse{

cout<< s <<" 1is not in the array sorry!";

ARRAYS AND STRINGS © 51

}

return 0;

Output:

Enter the element to search:
55
55 found at index 6 %

3.3 Multi-Dimensional Array

We learned about 1D arrays and their operations earlier, so let us move
on to working with 2D and 3D arrays. These kinds of arrays have rows and
columns, and you can express them using the following statements:

2[)anﬂy:datatype array name[rows] [column];

3[)anﬂy:int three dl[array no] [rows] [columns];

Code: An Example Showing 2D and 3D Arrays

#include<iostream>
using namespace std;

int main ()
{
int arrayI[3] = {{5,1,4}, {2,3,7}};
cout<<"\n2D Array:\n";
for (int 1 = 0; 1 < 2; ++1i) {
for (int § = 0; 3 < 3; ++3) {
cout << arrayl[i][jl<<" ";
}
cout<<"\n";

int x[31(3] =¢{ { {7, 1,51}, { 26, 3,88 }, { 45, 5,78 } },
{ { 66, 77,33}, { 84, 9,32 }, { 10, 11,12

Py o
cout<<"\n3D Array:\n";

for (int m = 0; m < 2; ++4+m) {

for (int n = 0; n < 3; ++n) {
for (int g = 0; g < 3; ++qg) {
cout<< x[m] [n] [g]<<™ ";

52 < C++ PROGRAMMING FUNDAMENTALS

cout<<"\n";

}
cout<<"\n";

return O;

Output:

20 Array;
51 4
2 37

30 Array:
715

26 3 88
45 5 78

66 77 33
84 9 32
10 11 12

3.4 Strings

A string in C++ is a data type that represents characters that are stored as a
collection of bytes in contiguous memory locations. These are useful when
we need to work with text. The syntax for strings is as follows:

® string str_name = "a string"; //this only reads characters until a
whitespace is introduced

B char array(7] :{'c','a','r','l','o','s','\O'hﬁarﬁglof
characters with the last element always null to identify the end of the

string
B char arrayl[] ={'c','a','r','1"','0","'s"',"\0"};
B char array[size]="string";
B char array[]="string";

Code: An Example of Working with Strings

#include <iostream>
using namespace std;

int main () {
string strl;
cout << "Enter your name:
cin >> strl;
cout <<
return 0;

"Name: " << strl;

Output:

Enter your name:
Carlos Sainz

Name: Carlos$

3.5 String Functions

’

ARRAYS AND STRINGS © 53

The C++ string class provides a wide range of functions to perform on
strings, as shown in the following table.

Table 3.1 Syntax and Functionality of String Functions

Function Syntax

Functionality

strcat(char_arrl, char_ arr2);

Concatenate two character arrays

stringl.append(string2) ;

Appends a string to another string’s end

int length() ;

Find the length of a given string

void swap(stringé& stringl) ;

Swap two strings

int compare(const stringé&
stringl) ;

Check whether two strings are equal or not

int size()

Find the size in bytes of the string.

int find(string& stringl, int
pos, int size)

Find a string at a given position

int copy(string& stringl)

Copy contents of one string onto another

int capacity()

Returns the amount of memory space
allocated

Read input string until the \n character is

getline() reached

resize () Increase or decrease the string size
end () Identify the end of a string

rend () Reverse the ending of a string

char& at(int pos)

Find a character at the position

string& append(const stringé&
stringl)

Append a string to another

54 « C++ PROGRAMMING FUNDAMENTALS

Summary

= Array is a data type in C++ to store similar data under the same name,
and it is accessed using indexes.

= All array elements are stored in contiguous memory locations.

= The element at index 0 can also be said to be a pointer to the array
name, and the array goes up to n-1

= An array passes through a function using only its name.
= Enum is a user-defined data type.
= Accessing each and every element by index is called traversing an array.

= The elements of an array can be searched using a linear or binary
algorithm.

= An array of an arrays is called a multi-dimensional array.

= A string in C++ is a data type that represents a collection of characters
that is stored as a collection of bytes in contiguous memory locations.

= String functions such as concat, compare, length, and size were
discussed.

Exercises

Theory Questions
1. Discuss the concept of an array in C++.
. How do you declare an array?
. What are the advantages and disadvantages of arrays?
. Explain how 2D and 3D arrays work.
. Compare the linear and binary search algorithms for arrays.
. What is meant by dimension and subscript with respect to arrays?
. What is a string in C++?

. Compare strings and character arrays.

O 00 N & «»i A W N

. Discuss various operations done on strings in C++ using examples.

ARRAYS AND STRINGS © 55

MCQ-Based
1. Array elements are always stored in memory locations.
a. Sequential
b. Random
c. Sequential and random

d. None of the above

2. A string is a(n)
a. data type in C++
b. array of characters ending with a null character
c. array of characters starting with a null character

d. array of integers ending with 0

3. Choose the correct statement about string objects.
a. They are terminated by a null character “\0.”
b. They have a limited, defined size.
c. They are dynamic.
d. None of the above

4. Which of the following is (are) used to find the length of a string?
a. length()
b. size()
c. max_size()

d. both size() and length()

5. Which of the following is the correct way to declare an array?
a. int array;
b. int array[size];
c. array{ele};

d. arraylele,ele} array[size];

56 ¢ C++ PROGRAMMING FUNDAMENTALS

6. What is the index of the last element of an array having 11 elements?

a. 12

b. 10
c.0

d. None

. In which process do we match every element in an array with a search

key?

a. Linear search
b. Bubble sort
c. Merge sort

d. Binary search

. What is the length of array {1,1,33,43,22,43,88,99}?

a. 9
b. 10
c.8
d. 0

Practical Questions

1.

Write a program in C++ to find the largest element of a given array of
integers.

. Write a program in C++to print letters or your name in a string array.

3. Write a program in C++ to find the largest element in an array.

. Write a program in C++ to find the second largest element in a given

array of integers.

. Write a program in C++ to find the sum of elements in a given array of

inte gers.

. Write a program in C++ toreverse a string.
. Write a program in C++ to find the largest word in a string.

. Write a program in C++ to sort a string alphabetically.

ARRAYS AND STRINGS © 57

9. Write a program in C++ to count all the characters in a string except
spaces and vowels.

10. Write a program in C++ to check if a given string is a palindrome (a
word read the same forwards and backwards, like “racecar” or “kayak”).

11. Write a program in C++ to find the sum of two matrices.

12. Write a program in C++ to find the transpose of a given matrix.

13. Write a program in C++ to multiply two matrices.

References

Books

= B. Stroustrup, The C++ Programming Language (4th Edition),
(Addison-Wesley Professional, 2013).

= K. R. Venugopal, Mastering C++ (2nd Edition), (McGraw Hill
Education, July 2017).

= Y. Kanetkar, Let Us C++, (BPB Publications, September, 2020).
Websites

= Learn CPP, accessed June 2022, https://www.learncpp.com

= Geeks For Geeks, accessed June 2022, hitps://www.geeksforgeeks.org

= Silly Codes, accessed June 2022, hitps://sillycodes.com

CHAPTER

PoINTERS IN C++

4.1

Introduction

After you work through this chapter, it is hoped that you might feel a little
more confident about using pointers in C++. What exactly is a pointer? In
programming terms, a pointer is a variable pointing towards the memory
space or the address of a given variable. A pointer holds the address of the
very first byte of the memory location where it is pointing to. This first byte
address is called the base address, and it is like a variable used to store the
address of another variable.

The concept of pointers takes time and effort to understand, but keep
practicing your coding skills while using them. With some effort, pointers
can play an important role in helping you make part of your code faster and
easier to access. You can do some important actions with pointers, even
declaring a pointer to a pointer. Let’s start with the basic declaration and
initializing process for pointers.

4.2 Pointers: Declaration and Initialization

Let’s start with the basics. The & (ampersand) is used to make reference
to the memory location of another variable. Pointers can be dereferenced,
which we do with the * (asterisk), and this means the operator gets the
value of the variable. The following code snippet declares a variable of

type pointer.

60 ¢ C++ PROGRAMMING FUNDAMENTALS

Code: An Example of Pointers

#include <iostream>

int main()

{
int *variable;
int var=10;
std::cout << var << '\n';
std::cout << g&var << '\n';
std: :cout << *(&var) << '\n';

return 0;

Output:
10

0X30cc965£8
10

In the prior code snippet, the keyword is indicating a valid data type in
C++, and variable is the name of the pointer variable. When the data type
is taken as an integer (int), it will only point towards an integer value, i.e.,
it will be a pointer to an integer. However, a pointer can point to any part
of the memory, as this action is its sole purpose. Arithmetic operations to
be done are so done with reference to the base type. Therefore, the correct
and relevant declaration of pointers in C++ is a priority.

The pointer in the code snippet in this example is that the var value is
equal to the pointer of the address, and the & gives us this number, which
is the exact memory location where the variable is stored. Now, let’s try
visualizing how a pointer works using an image. In Figure 4.1, the cylinders
serve as the memory space with addresses “xxx” and “yyy.” The arrow shown
in the figure acts as the pointer pointing towards the memory location.

There are few more ways to declare a pointer to assign the address of
the variable. Keep in mind that changes made to references are permanent
and often irreversible. Therefore, we should use pointers with care.

In C++, we deal with null pointers. As mentioned in previous chapters,
null is not equal to zero, but indicates that the value does not exist. A null
or zero pointer points towards an address that is not legal and null. Why use
it if no reference to an address can be made? As you proceed on in your
coding journey and use pointers more often, you might face an issue where

POINTERS IN C++ © 61

Figure 4.1 How a pointer works

you need to check whether the pointer is being used (for example, whether
id=s is valid). You can do this checking with the help of a null pointer.
All you need is to match the variable against a null pointer: if the value
holds true, the program will be altered because the pointer used is not legal,
helping you to make the relevant changes.

You can declare a null or zero pointer in the two ways: by either assigning
a NULL value to a pointer variable or using the keyword nu11ptr, as shown
in following example.

Code: Using the Null Pointer

#include <iostream>
int main()
{
int *ptrl = nullptr ;//or use = NULL

if(ptrl != nullptr)
{

printf ("legal address pointed\n");
}
else{

printf ("legal address not pointed\n");

return O;

Output:

legal address not pointed

Look at the following example and try to predict the output on your own (or
you can test the code on your own computer to see what the output looks

like).

62 C++ PROGRAMMING FUNDAMENTALS

Code: Pointers at Work

#include <iostream>
using namespace std;

int main ()
{
int vall, val2;
int * ptrl, *ptr2, ptr3;

ptrl = &vall;

*ptrl = 10;

ptrl = &val2;

*ptrl = 20;

ptr3=50;

cout << "\nValue One = " << vall<< '\n';

cout << "Value One address = " << ptrl<< '\n';
cout << "Value two = " << val2 << '\n';

cout << "Value One address = " << ptr2<< '\n';
cout << "Value three = " << ptr3 << '\n';

cout << "Value three address = " << gptr3 << '\n';
return O;

}
Did you predict the output? Let us work through the code together:

1. We declared integer type variables vall, va12, and ptr2. ptr3 is a
variable, too, as no dereference symbol is being used with it.

2. Next, two pointer variables, ptr1 and ptr2, are declared and only the
ptrl pointer is assigned addresses of value one and value two.

3. Then, integer ptr3 has the given value.
4. All addresses and values will get printed.
Output:

Value one = 10

Value one address = 0X308cd65e4
Value two = 20

Value one addresss = 0XO0

Value three = 50
Value three address = 0X308cd65cc

The output shows how the addresses of two separate variables can be
assigned to the same pointer. The pointer of the previous value 1 will show
zero address, and then point to a new address of value 2.

PoINTERS IN C++ © 63

4.3 Casting and Passing Pointers

4.3.1 Typecasting

In C++, we can typecast our variables from one data type to another. We
can do the same if we wish to change the assigned data type using pointers.
Let’s see an example of how this is done. We use reinterpret_cast, which
is a typecasting operator that helps convert the pointer’s data type. All it
does is change to a new type, and it does not check if the data the pointer
is pointing towards is the same or not. Its syntax is as follows (here, one
parameter is used as the pointer variable and returns no value):

data type *var name =

reinterpret cast <data type *>(pointer variable);
Return Type

Here are some important functionalities of reinterpret_cast:

= Special operator. It works only when the pointer has the same data type.
= Helps in casting into any other legal data type

= When bool is used, it will automatically be converted into an integer
equivalent, i.e., 1 signifies true and O signifies false.

= Mostly used when bits are on the center stage.
Now consider the following example:

Code: Use of reinterpret_cast

#include <iostream>
using namespace std;

int main ()
{
int* ptr= new int(69);
char* cr = reinterpret cast<char*>(ptr);
cout << *ptr << endl;
cout << *cr << endl;
cout << ptr << endl;
cout << cr << endl;
return 0;

64 C++ PROGRAMMING FUNDAMENTALS

Output:

69

E
0X7fbbed405ac0
E

Here, we have typecasted the integer 69 to its corresponding character type
value with the help of the special operator reinterpret_cast. Now, the cr
pointer type has value E, which is just the ASCII value of 69.

4.3.2 Passing

Passing a pointer to a function can be done in two ways: either by simply
passing the pointer or by passing a reference, as was done in some previous
examples, with simple data taken as the parameter (in this case, the data is
the pointer itself).

In the first method (simply passing the pointer), the memory addresses
of the variables are passed as parameters. Any changes made within the
function’s body will reflect on the original pointer. The following example
demonstrates this approach.

Code: Simply Passing the Pointer

#include <iostream>
using namespace std;

void function_A(int *x, int *y) {
*x= *x+10;

*y:*y+*x;

}
int main () {
int a,b;
int* numl;
int* num2;
numl= &a;
num2=&b;
cout<<"\nEnter value of Numl and Num2:";
cin>>*numl>>*num?2;

cout << "\nBefore Function Call Numl= " <<*numl <<" Num2= "
<<*num2<<endl;

function A(numl,num2);

cout << "\nAfter Function Call Numl= " <<*numl <<" Num2= "

<<*num2<<endl;

POINTERS IN C++ © 65

return 0;

Output:

Enter value of NUml and Num2:4

5

Before Function Call Numl= 4 Num2= 5
After Function Call Numl= 14 Num2= 19

In the second approach, passing the pointer by using a reference, the
reference variables that are created are passed as arguments. This means
that any changes made within the function’s body will reflect on the
original values, hence, the changes are permanent. The following example
demonstrates this approach.

Code: Passing the Pointer Using a Reference

#include <iostream>
using namespace std;

void function_A(int &x, 1int &y) |
x= x+10;
y=y+x;

}

int main () {

int numl;

int num2;

cout<<"\nEnter value of Numl and Num2:";

cin>>numl>>num?;

cout << "\nBefore Function Call Numl= " <<numl <<" Num2= "
<<num2<<endl;

function A(numl,num2);

cout << "\nAfter Function Call Numl= " <<numl <<" Num2= "
<<num2<<endl;

return 0;

Output:

Enter value of Numl and Num2:4

66 ¢ C++ PROGRAMMING FUNDAMENTALS

5
Before Function Call Numl= 4 Num2= 5
After Function Call Numl= 14 Num2= 19

We can easily swap numbers using pointers by passing the pointer to the
numbers and making a temporary pointer to store value. We then swap the
provided pointers and print the results before and after swapping.

Code: Swapping Numbers Using Pointers

#include <iostream>
using namespace std;
int main () {

int numl=30, num2=90;

cout << "\nBefore swapping Numl= " <<numl <<" Num2= "
<<num2<<endl;

swap (numl,num2);

cout << "\nAfter swapping Numl= " <<numl <<" Num2= "
<<num2<<endl;

return 0;

void swap(int *x, int *y) {
int* temp;
temp=x;
X=Yy;
y=temp;

Output:

Before swapping Numl= 30 Num2= 90
After swapping Numl= 90 Num2= 30

4.4 Using Pointers with Arrays

We have learned about the role of a pointer in C++ and how it holds the
address of a variable/value. However, can it point to a group of variables and
help modify them? That is possible: we assign the pointer to the base address
of a group of data in an array. This approach is illustrated in the following
code (carefully read the explanation given for the one-dimensional array).

POINTERS IN C++ © 67

Code: Using a Pointer with an Array (Example 1)

#include <iostream>

int main()
{
int array[3] = { 101, 102, 103 };
int *ptr = array;//
std: :cout <<"\nBase element : \n"<< ptr<<" array[0]= "<<* (ptr);

std: :cout <<"\nSecond element: \n"<< ptr+l <<" array= "<<* (ptr+l);
std: :cout <<"\nThird element: \n"<< ptr+l <<" array= "<<* (ptr+2);

return 0;

J

Output:

Base element

0X30da805ec array[0]= 101
Second element:

0X30da805f0 array[l]= 102
Third element:

0X30da805f0 array[l] = 103%

Here, int *ptr = array; will assign the base address of the array, which
is the first element, to the pointer ptr. The following arithmetic operations
of pointers incrementing pt r will point towards the next integer in line, that
is, the second element of the array:

ptr + 1 = = &array;

ptr + 2 = = &array;..... . or
*ptr = = arrayl[0];

*(ptr + 1) = = array;

*(ptr + 2) = = array;.... .

All you need to take care of is the arithmetic to be able to access all the
elements of the 1D arrays. The same can be done to assign a pointer to all
elements of an array, that is, to the array with the following simple syntax:

data type (*pointer var) [Array size];

Up until now, we have been referencing the base 0" element of the array
and accessing other elements from it. However, now the whole array falls
under the “umbrella” of one pointer. This method will help us when we
work with multi-dimensional arrays, too. How they work is explained in the
following example.

68 ¢« C++ PROGRAMMING FUNDAMENTALS

Ptr \\\
6000

4500
101 102 103 104 value
/ 6000 6004 6008 6012 address
Pa
6000
5600

Figure 4;2 I;ointersrto;r} atjr;y 7

In Figure 4.2, ptr is a pointer is pointing to the base element of an array
consisting of 4 integers. pa is a pointer pointing to the whole array. Recall
the pointer arithmetic, where on incrementing, the pa++ pointer will move
16 (4+4) bytes, as denoted by the whole array, while ptr++ will result in a
step of only 4 bytes. Note that here, dereferencing the ptr pointer will give
the whole array represented by the name of the array, which is also the base
element.

Code: Using a Pointer with an Array (Example 2)

#include <iostream>
using namespace std;

int main () {

int array([4];

int *ptr;

int *pa;

pa = array;

ptr= &array[0];

cout << "\nptr++ = "<< ptr++ << endl;
cout << "\npa++ = "<< pa++ << endl;

cout<<"\nArray addresses with help of pointers: "<< endl;
for (int 1 = 0; 1 < 4; ++1)

{

cout << "ptr + " << i <K " = "< ptr + 1 << endl;
}
cout << "ptr++ = "<< ptr++ << endl;
cout << "pa++ = "<< pa++ << endl;

return 0;

POINTERS IN C++ © 69

Output:

ptr++ = 0X309%9abf5a0
pat+t = 0X309%9abf5al

Array addresses with help of pointers:

ptr + 0 = 0X309%abfb5a4
ptr + 1 = 0X309%abfb5a8
ptr + 2 = 0X309%abfbac
ptr + 3 = 0X309abf5b0

ptr++ = 0X309%abfba4
pat+t = 0X309%9abf5a4

In the case of multi-dimensional arrays, we can also access all the elements
using a pointer either to the base element or the whole array. When
representing 2D arrays, we use row number i and column number j as
the two parameters for defining a 2D array. We write the 2D array code as
array[i] [J], soits corresponding pointer representation is * (* (arr + i)
+ 3). Let us consider the following two-dimensional array:

int arr([3]1(4] = { {11, 22, 33, 44}, {52, 65, 75, 88}, {92, 101,
121, 152} };

In this example, * (array+i) where i=1, we obtain the base element of
array[i]. However, if we take into consideration the 2D array, we
increment +7j to get the address of the jth element of the ith 1D array.
We then have the following:

*(arr + i) + 1= =the address of the first element of the itn 1D array
*(arr+i)+2 = = the address of 2nd element of the ith 1D array.
*(arr + i) + j will represent the address of the jth element of the ith

1D array.

Code: Using a Pointer with an Array (Example 3)

#include <iostream>

using namespace std;

int main ()

int array([3][4] = { {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12} };
int 1i,3;
for (i=0;1<3;i++)

{

70 ¢ C++ PROGRAMMING FUNDAMENTALS

for (3=0;3<4;3++) {

cout << "* (array+"<<i<<") +"<<j <<"= "KL * (array+i)+j <<endl;

H}

return 0;

}

Output:

* (array+0)+0= 0X3053d95a0
* (array+0)+1= 0X3053d95a4
* (array+0)+2= 0X3053d95a8
* (array+0)+3= 0X3053d95ac
* (array+1)+0= 0X3053d95b0
* (array+1l)+1= 0X3053d95b4
* (array+1l)+2= 0X3053d95b8
* (array+1)+3= 0X3053d95bc
* (array+2)+0= 0X3053d95c0
* (array+2)+1= 0X3053d95c4
* (array+2)+2= 0X3053d95c8
* (array+2)+3= 0X3053d95cc

Similarly, we can create a three-dimensional array where we can access all
the elements using three parameters.

4.5

Pointer Use

Pointers in C++ have a wide range of use and help perform many tasks with
ease. Some of the uses of pointers are listed here.

Pointers can be passed as arguments to a function by referencing it.
Array items can be accessed using pointers.

Pointers help in performing easy arithmetic and swapping operations to
values.

Pointers can be used to return more than one value from a function with
ease.

Pointers help in dynamically allocating memory.
In C++, pointers help to use data structures efficiently.

Pointers do valid address checking on values with the help of nu11ptr
or zero or a NULL pointer.

POINTERS IN C++ ¢ 71

Table 4.1 Pros and cons of pointers

Advantages Disadvantages

Pointers help in saving memory space. Even the slightest error in input results in the
wrong output

Pointers can perform faster executions, as They work more slowly than other variables.

they can directly access and change data from

memory.

Pointers can be used in file handling. Always need to be dereferenced

Array elements can be accessed using If any pointer is made to point to the

pointers. wrong memory address, it might result in a

permanent change to the value there.

Pointers help in dynamic memory allocation | There is always the issue of a memory leak if

deallocation not handled carefully.

Summary

A pointer holds the address of the very first byte of the memory location
where it is pointing.

This first byte address is called the base address, and it is like a variable
to store the address of another variable.

The & (ampersand) is used to make reference to the memory location of
another variable.

A pointer needs to be dereferenced with the * (asterisk) to declare a
variable of type pointer.

interpret_cast is a typecasting operator provided to us in C++ that
helps convert the pointer’s data type.

A NULL or zero pointer points towards an address that is not legal and
null.

Passing a pointer to a function can be done in two ways: either by
passing a value or by passing its reference.

When passing by value, the copies of pointers are passed as arguments
and the changes are reflected in the original variables.

When passing by reference, the addresses are directly passed as
arguments, hence the changes are permanent.

Pointers also help to access array elements by either the base element
reference or the array pointer assigned.

72 ¢ C++ PROGRAMMING FUNDAMENTALS

Pointers in C++ have a wide range of use and help perform many tasks
with ease.

Exercises

Theory Questions

1.

N »n A W N

N

9.

Define a pointer and how it works in C++.

. How are pointers declared and initialized?

. What is the usage of the pointer in C++?

. Discuss pointer arithmetic with a few examples.

. What is the use of a null pointer in C++? How do we declare it?

. Write down the difference between an array pointer and base address

pointer.

. How does a null pointer help check address validity in C++?

. List some drawbacks of using pointers. Support your reasons with

examples.

What is the difference between a reference and a pointer in C++?

Practical Questions

1.

Write a program to print the address of a variable and input its value
from the user.

. Write a program in C++ to swap two numbers using pointers.

. Write a program in C++ to swap the first two characters of your name

with a pointer as the argument.

. Write a program in C++ to perform simple arithmetic operations on

four different types of pointers.

. Write a program in C++ for a simple calculator with a menu using only

pointer variables.

. Write a program in C++ to input an array of addresses from a user and

print each of these addresses using a pointer.

. Write a program in C++ to display the difference between passing by

value and passing by reference for a pointer variable.

POINTERS IN C++ © 73
8. Write a program in C++ to find a maximum of five inputs from a user
with help from pointers.
9. Write a program in C++ to find an element in an array using pointers.

10. Write a program in C++ to determine the BMI of a person using point-
ers as arguments for the weight, height, and other factors.

11. Write a program in C++ to display the factorial result of a user-given
number, using pointers as arguments.

12. Write a program in C++to display an array of pointers.
13. Write a program in C++ to print multiples of five as an array of pointers.

14. Write a program in C++ to access elements of a 2D array using pointers.

MCQ-Based

1. Which operator is used for dereferencing or indirection?
a. *
b. &
C. ->
d. —>>

2. What role does a pointer play in C++?
a. holds the data value
b. holds the name of the variable
c. holds the address of the variable
d. holds the data type of the pointer

3. What is true about the following statement?

char* x char y ;

a. x is a character
b. y is a string
c. x is a character pointer

d. y is a character pointer

74 ¢« C++ PROGRAMMING FUNDAMENTALS

4. What is true about the following code?
int x =1023, y =456;

int *ptrl = &x, *ptr2 = &y ;
ptrl= ptr2 ;
a.b==a
b. ptr1 points to y
C.a = =Db
d. ptr2 points to x
5. Which of the following is the correct way to declare a pointer?
a. int *a
b. int sa

C. int ptr
d. All of the above

6. What is the method of referencing a value through a pointer?
a. Pointer referencing
b. Direct Addressing
c. Indirection
d. Indirect Addressing

7. Is *ptr++ equivalent to ++*ptr?

a. True
b. False
c. Maybe
d. Invalid

8. What can pointers helps us with?
a. Accessing all array elements
b. Dynamic memory allocation
c. Implementing data structures

d. All of the above

POINTERS IN C++ ¢ 75

9. What does char****x mean?
a. x is a pointer to a pointer to a pointer to a character

b. x is pointer to a pointer to a pointer to a pointer to a character
c. x is pointer to a character pointer
d. x is pointer to a pointer to a character
10. Is the nullptr the same as an uninitialized pointer?
a. Yes
b. No
c. Maybe
d. None of the above

References

Books

= B. Stroustrup, The C++ Programming Language (4th Edition)
(Addison-Wesley Professional, 2013).

= K. R. Venugopal, Mastering C++ (2nd Edition) (McGraw Hill
Education, July 2017).

= Y. Kanetkar, Let Us C++ (BPB Publications September, 2020).

» Y. Kanetkar, Test Your C++ Skills (BPB Publications March, 2003).
Websites

= Learn CPP, accessed July 2022, hitps://www.learncpp.com

= Codes Cracker, accessed July 2022, https://codescracker.com

= Geeks For Geeks, accessed July 2022, https://www.geeksforgeeks.org

= C Plus Plus, accessed July 2022, https://cplusplus.com

= Silly Codes, accessed July 2022, https://sillycodes.com

CHAPTER

CLASSES IN C++

5.1 Class Making

We talked briefly about what a class is and how in object-oriented
programming, we build up from this basic unit. A class is a user-defined
data type consisting of methods and data grouped together as members
(i.e., encapsulated). A class uses objects that store data and have a defined
state and behavior; it is also referred to as an instance of a class. A class
is like a broad category that encompasses some entities that have similar
attributes or features. For example, a cat and a tiger have similarities and
belong to the Felidae animal family. In this example, Felidae is the name
of the class and cats and tigers are the class members. The following code
shows how we declare and use classes in C++.

Code: Declaring and Using Classes

#include <iostream>
using namespace std;
class Felidae
{
public:
string cats;
string tigers;
void petName ()
{
std::cout << "\nCat's pet name is: " << cats;

78 ¢ C++ PROGRAMMING FUNDAMENTALS

bi

std:: cout << "\nTiger's pet name is: " << tigers;

}

int main() {

Felidae objectl;

objectl.cats = "checo";
objectl.tigers = "maxial";
objectl.petName () ;
return O;

}

Output:

Cat's pet name is: checo

Tiger's pet name is: maxial$

Let’s take a look into how this code works. Try to predict the execution flow
to improve your understanding.

1.

Although main is the typical entry point of execution in a C++ program,
here we have declared a class outside main. It is possible to declare a class
either outside or inside main.

. Class Felidae is defined with the keyword c1ass and members cats

and tigers are strings with the petName function.

. We observe that access specifiers in a class are defined by labels, where

public members are accessible to all and private members are only
available to the class methods.

. In main, we have taken two objects and accessed the members using the

dot operator, and then assigned names to them.

. One object accesses all data members of the class, so we can create as

many objects as we need.

Class naming tips

= Start with a capital letter and give the class a name that makes sense.

= Assign objects a name that makes it clear what they are for.

= You can use symbols, such as an underscore, in class names.

Code: Working with Classes

#include <iostream>

using namespace std;

CLass IN C++ « 79

class Myclass

{
public:
int x=40,y;
void sum/()
{

std::cout << "\nSum is: " <<x+y;

bi

int main() {
Myclass cl;
Myclass c2, c3;
cl.y= 10;
c2.y = 20;
cl.sum();
c2.sum() ;

return 0;

}
Output:

Sum is: 50
Sum is: 60%

5.2 Constructors and Destructors

A class in C++ has data members, like variables of different types and
methods (functions). In addition to these, there is another special member
function called a constructor, whose main role is to initialize a class and
construct the value of all data members without accessing and calling all the
functions with the object as we did before. Destructors involve “breaking”
or eliminating the objects created by the constructor so as to not overload
the computer’s limited memory.

Characteristics of Constructors:

1. It has the same name as the class

2. They can be made accessible on a public, private, or protected level.
3. They cannot be inherited or instanced by any other class.

4. The default constructor is called whenever an object is created.

5. In C++, constructors cannot be declared as virtual.

6. They have no return type.

80 ¢ C++ PROGRAMMING FUNDAMENTALS

Code: Using Constructors and Destructors

#include <iostream>
using namespace std;
class Driver
{
public:
Driver ()
{
std::cout << "\nThis 1is a constructor of class Driver\n"
<<endl;

}r

int main() {
Driver dl;
return 0;

}
Output:
This is a constructor of class Driver

Observe that as soon as the object is created, the constructor of the class
is called upon, as it has the ability to be overloaded. Let us now define the
various types of constructors.

Types of Constructors in C++

C++ provides us with three type of constructors, each a little different.
These types are as follows.

1. Default Constructors

These take up no arguments and all objects of the class are initialized
with the same set of values. These are given by the compiler, and they
will be 0 or any integer value. If the programmer forgets to define a
constructor explicitly in C++, the compiler will provide them with the
default constructor implicitly. The syntax for writing the default con-
structor is as follows:

class class_name
{ class name()
{ //body

}

b

Crass IN C++ « 81

Code: Using the Default Constructor

#include <iostream>
using namespace std;
class People
{

public:

People ()

{

std::cout << "\nThis is a default constructor \n" <<endl;

}

bi
int main() {
People Objectl;

return 0;

Output:
This is a default constructor
Code: Implementing Parameterized Constructors

#include <iostream>
using namespace std;
class People

{
public:
int x;

}i
int main() {
People Objectl;
cout<<"\nWill be provided with any random value:
"<<objectl.x<<endl;
//Garbage value would be shown as X is not initialized

return 0;

Output:

Will be provided with any random value: 9015333

82 ¢ C++ PROGRAMMING FUNDAMENTALS

2. Parameterized Constructors

Ina pammetem’zed constructor, we can pass one or more arguments to
the member function so as to assign different initialization values to an
object as it is created. Keep in mind that to call this type of constructor,
we must use the correct order and type of arguments as defined in the
constructor’s prototype. The syntax fora parameterized constructor is as
follows:

class class name
{ class name (argument list..)
{ //body
}
bi

Code: Using Parameterized Constructors

#include <iostream>
using namespace std;
class Student
{
public:
Student (string n)
{
std::cout << "\nThis is a parameterized constructor" <<endl;
std: :cout << "\nName is " <<n<<endl;
}
}i
int main() {
Student sl ("Mary");
return 0;

Output:

This is a parameterized constructor
Name is Mary

3. Copy Constructors
A copy constructor helps to create a copy of another object of a class. The
copy is created with all the same values for all data members. The syntax
for a copy constructor is as follows:

class Class_ name
{ Class name (argument list..)

Crass IN C++ « 83

{ //body
}
Class name (const Class name)
{ //body
}
}i

Code: Using the Copy Constructor

#include <iostream>
using namespace std;
class Student
{
public:
string n;
/*Student ()
{
std::cout << "\nThis is a default constructor \n" <<endl;
}*/
Student (string n)
{
std::cout << "\nName is " <<n<<endl;
}
Student (const Students& sl)
{

std::cout << "\nThis 1is a copy constructor\n" <<endl;

}i

int main() {
//Student sl;
Student sl ("Rio");
Student s3(sl);

return 0;

J
Output:

Name is Rio
This is a copy constuctor

Code: Using Constructors

#include <iostream>
using namespace std;
class Student

84 ¢ C++ PROGRAMMING FUNDAMENTALS

public:
Student ()

{
std::cout << "\nThis is a default constructor \n" <<endl;

}
Student (string n)
{

std::cout << "\nThis is a parameterized constructor" <<endl;
std::cout << "\nName is " <<n<<endl;

}
Student (const Studenté& s2)

{
std::cout << "\nThis is a copy constructor\n" <<endl;
}
}i
int main() {
Student sl;
Student s2 ("Mary ");
Student s3(s2);
return 0;

}
Output:

This is a default constructor
This is a parameterized constructor
Name is Mary

This is a copy constuctor

Destructors are called when an object is not in use any more and in need
of deletion. They help with memory utilization so unused objects don’t
take up needed space. A destructor is automatically called by the compiler
whenever the object seems out of scope. If you wish to do the destruction
manually, you use the tilde (~). Let us see some of the destructor’s features.

Characteristics of Destructors:
1. It has the same name as the class.

2. Helps deallocate the memory of an unused object

3. It takes no parameter and is only of one type, hence, it cannot be
overloaded.

Crass IN C++ « 85

4. Destruction occurs in the opposite order of construction, meaning the
object created last is deleted first (LIFO, Last In First Out).

The syntax for destructors is as follows:

class Class name { Class name (argument list..)
{ //Constructor body}
~Class name ()
{ //destructor body}};

Code: Using Constructors and Destructors

#include <iostream>
using namespace std;
class Student
{
public:
Student ()
{
std::cout << "\nThis is a default constructor \n" <<endl;
}
Student (string n)
{
std::cout << "\nThis is a parameterized constructor" <<endl;
std::cout << "\nName is " <<n<<endl;
}
Student (const Studenté& s2)
{
std::cout << "\nThis is a copy constructor\n" <<endl;
}
~Student ()
{
std::cout << "\nThis is a Destructor for all\n" <<endl;
}
}i
int main() {
Student sl;
Student s2 ("Mari");
Student s3(s2);

return 0;
}
Output:

This a default constructor

86 ¢ C++ PROGRAMMING FUNDAMENTALS

This is a parameterised constructor
Name is Aditi

This is a copy constructor

This is a Destructor for all

This is a Destructor for all

This is a Destructor for all

Table 5.1 Constructors & Destructors Difference Table

CONSTRUCTOR DESTRUCTOR
Helps with allocating memory and initializing | Helps with deallocating memory of an
values of an object unused object
Class_name (argument list..) ~Class name ()
LIFO (Last In First Out) is followed in LIFO (Last In First Out) is followed in
calling calling

Parameterized and copy constructors do take | It takes no parameter.

parameters.

Can be overloaded Cannot be overloaded

The same class can have more than one There can exist only one destructor for a
constructor. given class.

5.3 The This Pointer

Every object of a class carries with it a copy of all data members, but they
access the original copy of the functions. A situation might occur when
multiple objects are accessing the same member function. How will the
values inside the function be updated? This problem can resolved using the
this pointer. It stores the address of an object or class instance to enable
the member function to update the correct object values. It can be used
in various places and in various ways. It can sometimes even be hidden
from us, as when the compiler comes across any member function, it will
implicitly add this as a non-static function parameter to keep track of the
address to “recall” which object called this function.

The this pointer will always point towards the object or instance
being worked on currently. We can explicitly make reference to the this
pointer by using it inside a constructor or methods and point to the instance
variables to be updated without changing the pointer direction.

Code: Using the this Pointer

#include<iostream>
using namespace std;

Crass IN C++ « 87

class Average f{
private:
int numl;
int num2;

int r;
public:
Average (int numl, int num2) {
this->numl = numl;
this->num2 = num2;

}
void AvgResult() {

cout<<"\nAverage of numl and num2 = "<<(this-
>numl+this->num?) /2<<endl;

}
i

int main () {
Average objectl (22, 33);
objectl.AvgResult () ;
return 0;

}
Output:

Average of numl and num2 = 27

5.4 Class Methods

We have discussed the class and its members, as well as the special class
function constructors. Now, let us consider class methods. Class functions
can either be defined inside or outside the class definition. Calling of these
functions is carried out using objects of the class through the dot or selection
operator.

Code: Using the Class Method

#include <iostream>
using namespace std;
class myclass
{

public

static int numl;

int y=100,r;

int sum(int x,int vy)

88 ¢ C++ PROGRAMMING FUNDAMENTALS

cout << "\nSum is = " << x+y<<endl;
}

static int assign (int x)

{

cout << "\nAssigned value to integer= " << x<<endl;

}

void avg ()

{
r= (numl+y)/2;

cout << "\nAverage is = " << r<<endl;
cout << "\nName is " << n<<endl;

}

private:

string n="Joey";

}i

int myclass::numl=4560;

int main ()

{
myclass objl,obj2,0bj3;
myclass::assign(45);
obj2.avg() ;
obj2.sum(20,27) ;
cout << "\nThe static variable value : " <<objl.numl<<endl;
return 0;

}

Output:

Assigned value to integer= 45

Average is = 2330

Name is Joey

Sum is = 47

The static variable value : 4560

In the previous code, you might have observed a new symbol (: :), which
is called a scope resolution operator in C++. Its primary role is to access or
assign value to static members of a class.

Uses of the Scope Resolution Operator

= To access global variables to verify if they have name “clashes” with any
of the local variables

= To define a particular function body outside the class

Crass IN C++ « 89

= To access static data type members

m Used in inheritance

C++ has a feature that enables inline functions in a class, where the compiler
copies the code of a function body whenever it is called upon. This produces
faster results, and so we, as programmers, do not have to write code for it
again and again. The syntax for calling inline functions is as follows:

inline returnType function Name (Argument List...)

{ // function body}

5.5 The static Keyword

You might have heard the word static many times. In physics, it mostly
defined as a state of rest and no motion, but in C++, the static keyword
declares any variable, data members, or functions as a type of constant.
These values cannot be modified. It is initialized only once and only one
copy is used throughout the lifetime of a program.

Characteristics of the Static Keyword

1. Static variables are initialized only once in a C++ program.

2. A static variable can either be defined within a particular function or
outside it.

3. The scope of a static variable is local to the block where it is used.

4. Zero is the default value provided to a static variable if it is not assigned
by the programmer.

5. The lifespan of a static variable lasts until the termination of a program,
and then the memory space freed.

6. Static functions are called from the class name directly.

The syntax for static functions and variables is as follows:

static DataType var = 10; // gives a static variable
static returnType function // static function declared
{ // body

}

Code: Using Static Functions and Variables

#include <iostream>
using namespace std;

90 ¢ C++ PROGRAMMING FUNDAMENTALS

class myclass
{
public :
static int numl;
static int assign (int x)
{
cout << "\nAssigned value to integer= " << x<<endl;

}i
int myclass::numl=4560;
int main ()
{
myclass objl;
myclass::assign (87);
cout << "\nThe static variable value : " <<objl.numl<<endl;
return O;

Output:

Assigned value to integer= 87
The static vaiable value : 4560

5.6 Memory Management and Garbage Collection in C++

C++ provides other useful operators, like new and delete. These operators
help enhance our flexibility to allocate or deallocate memory whenever
required than C functions like malloc (), calloc(), and free ().

Memory management in programming is important, as the RAM space
provided in a device is limited. Garbage collection is a type of memory
management technique done either manually or automatically by the
garbage collector. We have done this type of work before: all global and
static variables only live until the end of the program, after which they are
of no use and the memory is freed up. Local variables inside a function,
too, only “live” between the span of the function call and return statement.
All of this work is done automatically in C++, and all of it is done at the
compile time. C++ also has the ability to allocate memory for variables at
runtime, which is referred to as dynamic memory allocation. This has to
be done manually, unlike as is done in some other programming languages
like Java or Python, where the compiler automatically manages the memory
allocation task.

Crass IN C++ « 91

Why Use Dynamic Memory Allocation?

1. Useful for situations where we are not aware of the size of a particular
data type until runtime

2. To make a group of data types more flexible and modifiable by the user

3. User input given more attention and results become more personalized

New Operator

The new operator in C++ helps in dynamically allocating memory . We
make a request for memory space and if the required amount of memory
is there, then the specified amount of memory is allocated and returns a
pointer to it (or null, if it failed to allocate). sizeof can be used to compute
its size. The syntax for this operator is as follows:

Pointer = new dataType;
Datatype *new datatype [size in int];
pointerVar = new Datatypel[int size];

Delete Operator

The delete operator in C++ helps in dynamically deallocating memory.
The address becomes invalid, and the memory is now used by different
data, so it returns void. If an object is allocated using the new operator, then
it can only be deleted using the delete operator. This operator ensures safe
and efficient memory use. The syntax for the delete operator is as follows:

delete ptr var;
Code: Using the Delete Operator

#include <iostream>
using namespace std;
int main () {
int *ptrl = nullptr;
ptrl = new int;
*ptrl = 28;
cout << "\nValue of pointer variable 1 : " << *ptrl << endl;
delete ptrl;
return 0;

Output:

Value of pointer variable 1 : 28

92 o C++ PROGRAMMING FUNDAMENTALS

Summary

= A class is a user-defined data type consisting of methods and data
grouped together as members.

» A constructor’s main role is to initialize a class, and it constructs the
value of all the data members.

= Three types of constructors are default, parameterized, and copy.
= Destructors help in deallocating the memory of an unused object.
» Constructors and destructors both have the same name as of the class.

= The this pointer in C++ that stores the address of an object or class
instance enables the member function to update the correct object
values.

m Class functions can either be defined inside or outside the class
definition.

= Calling class functions is carried out using objects of the class through
the dot or selection operator.

= In C++, the static keyword declares any variable, data members, or
functions as a type of constant. The values cannot be modified.

= :: is the scope resolution operator in C++, and its primary role is to
access or assign value to static members of a class.

= The newand delete operators are used for memory allocation and
deallocation in C++.

Exercises

Theory Questions
1. What is a class? Describe the syntax for declaring a class with examples.
2. Discuss class making and declaration in C++?

3. What is the difference between member functions defined inside and
outside the body of a class?

4. Explain the different methods of passing object parameters.

5. Discuss constructors and destructors in C++ using examples.

6.
7.

Crass IN C++ « 93

How is memory allocation done dynamically in C++?

In how many ways can the static keyword be used in C++? Discuss
this using code examples.

Practical Questions

1

. Write a program to create a class named student with a string variable

name and an integer variable ro11 no. Assign the value of ro11 no as 2,
and that of the name as John by creating an object of the class student.

. Write a program in C++ illustrating a class declaration and definition, as

well as accessing class members.

. Write a program in C++ to depict the calling of the constructors of a

class.

. Write a program in C++ to depict the calling of the destructors for a

class.

. Write a program in C++ for a simple calculator with a menu using

concept of classes.

. Write a program in C++ to depict the ways of using the static

keyword.

. Write a program in C++ to count and display the number of times an

object is created using the static keyword.

. Write a program in C++ to depict the use of the new and delete

operators.

. Write a program in C++ for a simple calculator with a menu using only

pointer variables.

MCQ-Based

1.

Which of the following statements is correct about classes?
a. An object is an instance of its class.

b. A class is an instance of its object.

c. An object is the instance of the data type of that class.
d. Both A and C.

94 o C++ PROGRAMMING FUNDAMENTALS
2. If alocal class is defined in a function, what is true for an object of that
class?
a. The object can be accessed, declared, and used locally in that function.
b. The object must be declared inside any other function.
c. The object is temporarily accessible outside the function.

d. The object can call all the other class members anywhere in the pro-
gram.

3. Which of the following refers to the wrapping of data and its
functionality into a single individual entity?

a. Modularity
b. Abstraction
c. Encapsulation

d. None of the above

4. When struct is used instead of the keyword class means, what will
happen in the program?

a. access is public by default
b. access is private by default
c. access is protected by default

d. access is denied

5. Which is used to define the member of a class externally?
a.:
b. ::
c. #
d.!'s

6. What does a class in C++ hold?
a. data
b. functions
c. both data and functions

d. arrays

Crass IN C++ « 95

7. In a class, data members are also called

a. Abstracts
b. Attributes
c. Properties

d. Dimensions

. How many access specifiers are present in a class in C++?

a. 2
b. 1
c. 4
d. 3

References

Books

B. Stroustrup, The C++ Programming Language (4th Edition)
(Addison-Wesley Professional, 2013).

K. R. Venugopal, Mastering C++ (2nd Edition) (McGraw Hill
Education, July 2017).

Y. Kanetkar, Let Us C++ (BPB Publications September, 2020).
Y. Kanetkar, Test Your C++ Skills (BPB Publications March, 2003).

Websites

Learn CPP, accessed July 2022, https://www.learncpp.com

Codes Cracker, accessed July 2022, hitps://codescracker.com

Geeks For Geeks, accessed July 2022, https://www.geeksforgeeks.org
Udacity, accessed July 2022, https://www.udacity.com

Scaler, accessed July 2022, https://www.scaler.com

C Plus Plus, accessed July 2022, https://cplusplus.com

CHAPTER

INHERITANCE

6.1 Introduction

We discussed object-oriented programing concepts briefly in the first
chapter. Now, let’s learn a few of them in depth. We are familiar with class
making and how objects access them to use the members of a particular
class. In C++, we can make multiple classes in one program (and make
connections between these classes) and enable them to share access to
their individual data members. This concept of establishing a relationship
between classes where some of the properties are shared is referred to as
inheritance. This chapter examines inheritance and its type and how you
can make full use of this object-oriented programing concept. All topics
discussed have code examples, and readers are encouraged to try them all
to improve their understanding of this topic.

6.2 Inheritance

Just as a child inherits not only the assets of their parents but also some
unique features, like eye or hair color, inheritance in C++ is defined as the
ability of a “child” class to inherit features of its “parent” class. Let’s learn a
little more about these terms before we proceed.

= Parent class: Also known as the base class or super class. You can think
of it as the entity that existed before its children. All of its children
inherit properties from it.

98 ¢ C++ PROGRAMMING FUNDAMENTALS

= Child class: Also known as the derived class or sub class. This is a class
that is made out of the certain features of the base class.

Parent

Child

Figure 6.1 Inheritance

In Figure 6.1, the arrow going downward shows the relationship between
the classes. Can you identify the base class and sub class? The parent is
the base class, and the child is a derived class. Let’s declare and define the
relationship shown in Figure 6.1. The syntax is as follows:

class Child : access specifier Parent
{

// class body

i

Code: Working with Inheritance

#include <iostream>
using namespace std;
class Parent ({

public:
int p=60;
void showP ()
{
cout<<"\nParent age is " <<p<< endl;

bi
class Child : public Parent
{

public:
int ¢=20;

INHERITANCE © 99

void showC () {
cout<< "\nChild age is " <<c<< endl;

}i

int main() {
Child ci1;
cl.showP() ;
cl.showC() ;
return 0;

Output:

Parent age is 60
Child age is 20

Code Debriefing

= Asyou can observe from the preceding code, we have established a
relationship between two classes using inheritance.

= The child class will now be able to inherit and even modify properties
from the parent class.

= The objects of the child class can access the member functions of the
base or parent class.

6.2.1 Access Specifiers
In inheritance, the accessibility of a class has to the data members of another
class is defined by the access specifiers. The levels of access given are either
directly to the data members or to the inherited class declaration. There are
three primary access modes available in C++.

Direct Data Members

1. Public: Data members declared public can be accessed by any class,
irrespective of the relationship its class has with other classes.

2. Private: Data members declared private have limited access available to
only the base, friend, and derived classes. The concept of Friend classes
is to be discussed later.

3. Protected: Data members declared protected can be accessed by the
base class members and friend classes.

100 » C++ PROGRAMMING FUNDAMENTALS

Code: Using Access Specifiers (Public, Private, and Protected)

#include <iostream>
using namespace std;
class Parent {

public:
int pl=60;
void showP ()
{
cout<<"\nParent age
cout<<"\nParent age
cout<<"\nParent age
}
private:
int p2=12;
protected:
int p3=16;
bi

class Child :
{

public Parent

public:
int c1=20;
void showC () {
cout<< "\nChild age
cout<< "\nChild age
cout<< "\nChild age
}
private:
int c2;
protected:
int c3;

}r

int main() {
Child c;
c.p2= 36;
c.p3=56;
c.showP () ;
c.showC () ;
return 0;

is public " <<pl<< endl;
is private " <<p2<< endl;

is protectd " <<p3<< endl;

is public " <<cl<< endl;
is private " <<c2<< endl;
is protected " <<c3<< endl;

INHERITANCE © 101

Output:
inherit.cpp:37:7: error: 'p2' is a private member of 'Parent’
c.p2= 36;

inherit.cpp:14:9: note: declared private here
int p2;

inherit.cpp:38:7: error: 'p3' is a protected member of 'Parent’
C.p3=56;

inherit.cpp:16:9: note: declared protected here
int p3;
Carefully study the given code snippet and the errors that resulted as we
tried to access data members declared as private and public in the derived
class calls.

6.2.2 Inheritance Modes

1. Public: If a class is inherited as public, then the access defined for the
data members in the base class remain the same in the derived class, too.
That is, the public member has public access, the private member has
private access, and the protected member has protected access. This is a
commonly used method for inheritance access.

Code: Giving Access to Data

#include <iostream>
using namespace std;
class parentc
{
public
int agep=52;
protected
int avgSal= 43000;
private
int adharDigit=876;

bi
class PublicChild : public parentc
{
public:
int pro()
{
return avgSal;
}
bi

102 ¢ C++ PROGRAMMING FUNDAMENTALS

int main ()
{
PublicChild objl;
cout << "\nPrivate : adharnumber digit is inaccessible as
it is not inherited " << endl;
cout << "\nProtected<->Protected :avg salary is "
<< objl.pro() << endl;
cout << "\nPublic<->Public : age is " << objl.agep << endl;
cout<< "\n";

return 0O;

Output:

Private: adharnumber digit is inaccessible as it is not inherited
Protected<->Protected :avg salary is 43000
Public<->Public : age is 52

Code Debriefing

= Asyou can see from the code, we have established a relationship
between two classes using public inheritance.

= The public child class will now be able to inherit and even modify
properties from the parent class members, as their access is declared
in the base class.

= An object of the child class can access all the members except the
private ones of the base or parent class.

2. Private: If a class is inherited as private, then the access defined for
the data members in the base class changes to private in the derived
class. That is, all public, protected, and private members have
private(inaccessible) ranks.

Code: Using Private Classes

#include <iostream>
using namespace std;
class parentc
{
public
int agep=52;
protected
int avgSal= 43000;

INHERITANCE @ 103

private
int adharDigit=876;

bi
class PublicChild : public parentc
{

public:

int pro()

{

return avgSal;

}

int main ()

PublicChild objl;
cout << "\nPrivate : adharnumber digit is inaccessible as
not inherited " << endl;
cout << "\nProtected<->Protected :avg salary is "
<< objl.pro() << endl;
cout << "\nPublic<->Public : age is " << objl.agep << endl;
cout << "\n";

return 0;

Output:

Private: adharnumber digit is inaccessible as not inherited
Protected<->Protected :avg salary is 43000
Public<->Public : age is 52

Code Debriefing

= In this code, we have established a relationship between two classes
using private inheritance.

= The private child class will now be able to inherit and even modity
properties from the parent class members as their access is declared in
the base class.

= The objects of the child class can access all the members except the
private ones of the base or parent class.

= The new access specifier assigned to all of the inherited material is now
private.

104 + C++ PROGRAMMING FUNDAMENTALS

3. Protected.: If a class is inherited as protected, then the access defined for
the data members in the base class changes to protected in the derived
class, too. That is, public, protected members have protected access
ranks and private access remains private (inaccessible).

Code: Using Protected Inheritance

#include <iostream>
using namespace std;
class parentc
{
public
int agep=52;
protected
int avgSal= 43000;
private
int adharDigit=876;

}i
class ProtectChild : protected parentc
{
public
int pro()
{
return avgSal;
}
int pub()
{

return agep;

}i

int main()
{
ProtectChild objl;
cout << "\nPrivate : adharnumber digit is inaccessible "
<< endl;
cout << "\nProtected<->Protected : avg salary is "
<< objl.pro() << endl;
cout << "\nPublic<->Protected: age is " << objl.pub/()
<< endl;
cout<<"\n";

return 0;

INHERITANCE @ 105

Output:

Private : adharnumber digit is inaccessible

Protected<->Protected : avg salary is 43000
Public<->Protected: age is 52

Code Debriefing

In this code, we have established a relationship between two classes
using protected inheritance.

The protected child class will now be able to inherit and even modify
properties from all parent class members as their access is declared in
the base class.

Objects of the child class can access all the members except the private
ones of the base or parent class.

The new access specifier now assigned to all of the inherited material is
protected.

The following code blocks are a few more examples to explain the types
of declared inheritance in C++. Try these out on your own to get a better
understanding of the concepts we discussed.

Code: Using Different Types of Inheritance

#include <iostream>

using namespace std;

class Parent ({

public:
int pl=60;
void showP ()
{
cout<<"\nParent age is public " <<pl<< endl;
cout<<"\nParent age is private " <<p2<< endl;
cout<<"\nParent age is protecetd " <<p3<< endl;
}
private:
int p2=12;
protected:
int p3=16;

106 * C++ PROGRAMMING FUNDAMENTALS

class Child

{

private Parent

public:

int c1=20;

void showC () {
cout<< "\nChild age is
cout<< "\nChild age is
cout<< "\nChild age is

public " <<cl<< endl;
private " <<c2<< endl;
protected " <<c3<< endl;

}

private:
int c2;
protected:
int c3;

i

int main() {

Child c;
c.p2= 36;
c.p3=56;

c.showP () ;
c.showC () ;
return 0;

Output:

inherit.cpp:19:15: note: declared private here
class Child : private Parent

inherit.cpp:37:7: error: 'p2' is a private member of 'Parent’
c.p2= 36;

inherit.cpp:14:9: note: declared private here
int p2=12;

inherit.cpp:38:5: error: cannot cast 'Child' to its private base class 'Parent’'
C.p3=56;

inherit.cpp:19:15: note: declared private here
class Child : private Parent

inherit.cpp:as:;:ﬁz:::::ﬁT;;' is a private member of 'Parent'
C.p3=56;
Carefully study the given code snippet and errors that resulted when we
tried to access the inheritance declared as private in the derived class calls.
The access rules might seem difficult to understand, as their combination
creates a nine-member set of how class and class members can be inherited.

INHERITANCE © 107

Table 6.1 Mapping of inheritance types

Inherited as Public
Base Class Derived Class
Public Public
Private Inaccessible
Protected Protected
Inherited as Private Inherited as Protected
Base Class Derived Class Base Class Derived Class
Public Private Public Protected
Private Inaccessible Private Inaccessible
Protected Private Protected Protected

6.3 Types of Inheritance

Inheritance in C++ can be done in various forms and combinations. There
are six types of inheritance that can be implemented to define relationships

between various classes.

1. Single Inheritance

Single inheritance is the most basic type of inheritance, where there is
only one parent and one child inherits the properties. You can think of it
as a stepladder with two steps connected to one another. The syntax for

single inheritance is as follows:

class parent
{
// class body
}i
class child : accessMode
{
// class body
}i

Parent

Child

Figure 6.2 Single inheritance

108 ¢ C++ PROGRAMMING FUNDAMENTALS

Code: Working with Single Inheritance

#include <iostream>
using namespace std;
class Parent {

public:
int p=60;
void showP ()

{
cout<<"\nParent age is " <<p<< endl;

bi
class Child : public Parent
{

public:
int c=20;
void showC () {
cout<< "\nChild age is " <<c<< endl;

}r

int main() {
Child cl;
cl.showP() ;
cl.showC() ;
return 0;

Output:

Parent age 1is 60
Child age is 20
Code Debriefing

= Asyou can observe from the preceding code, we have established a
relationship between the two classes using single inheritance.

= Here, only the child class will now be able to inherit and modify
properties from all members of the parent class, as their access is
declared in the base class.

= Objects from the child class can access all the members except the
private ones of the base or parent class.

INHERITANCE © 109

2. Multilevel Inheritance

Multilevel inheritance, as the name suggests, has multiple levels of prop-
erty sharing. The bottom level does not directly inherit the properties,
but still can access all of the top levels” data members. You can think of
it in terms of family relationships. This type of inheritance is similar to
how a grandchild often has a few features from his grandfather. Objects
created only for the grandchild will be able to access all of its preceding
classes. The syntax for multilevel inheritance is as follows:

class A
{
// class body
}i
class B : accessMode A
{
// class body
}i
class C : accessMode B
{
// class body

1

Child

Grandchild

Figure 6.3 Multilevel inheritance

Code: Using Multilevel Inheritance

#include <iostream>
using namespace std;
class Parent {

public:
int p=60;

110 ¢ C++ PROGRAMMING FUNDAMENTALS

void showP ()

{
cout<<"\nParent age is " <<p<< endl;

}i

class Child : public Parent
{

public:
int ¢=20;
void showC () {
cout<< "\nChild age is " <<c<< endl;

}i
class Grandchild : public Child
{

public:
int g=4;
void showg() {
cout<< "\nGrandchild age is " <<g<< endl;

’

}i

int main() {
Grandchild gl;
gl.showP () ;
gl.showC () ;
gl.showg () ;
return 0O;

Output:

Parent age is 60
Child age is 20
Grandchild age is 4

INHERITANCE © 111

Code Debriefing

= Asyou can see from the code, we have established a relationship
between three classes using multilevel inheritance.

= Here, the grandchild class will now be able to inherit and modify
properties from the parent and child class, as their access is declared in
the base class.

= Objects from the grandchild class can access all the members except the
private ones of the base or parent class.

3. Multiple Inheritance

Multiple inheritance is when a class inherits properties from two other
classes. It has many uses, and the objects created for the bottom-level
class can access all members of both of the top classes. The syntax for
multiple inheritance is as follows:
class A
{
// class body
}i
class B
{
// class body
}i
class C : accessMode A, accessMode B
{
// class body
}i

Figure 6.4 Multiple inheritance

Code: Working with Multiple Inheritance

#include <iostream>
using namespace std;
class ringl
{
private :
string ss;

112 ¢ C++ PROGRAMMING FUNDAMENTALS

float cost;
public:
void getdata ()
{
cout<<"Enter Seat Section & Cost: "<<endl;
cin>>ss>>cost;
}
void showdata ()
{
cout<<"Seat : "<<ss<<endl;
cout<<"Cost: "<<cost<<endl;

}i
class ring2
{
private:
float spectators[3];
public:
void getdata()

int 1i;

for (1=0;1<3;1i++)

{
cout<<"\nEnter "<<i+1<<" Section Spectators ";
cin>> spectators([i];

}
void showdata ()
{
int 1i;
for (1=0;1<3;1i++)
{
cout<<"\n"<<i+1<<"Section Spectators= "<<spectators[i];

i

class arena:public ringl,public ring2
{

private

int guest;

INHERITANCE © 113

public:

ringl rl;

ring2 r2;

void getdata ()

{
rl.getdata () ;
cout<<"Enter guest";
cin>>guest;
r2.getdata () ;

}

void showdata ()

{
cout<<"\nGuest count= "<<guest<<endl;
r2.showdata () ;

}

}i

int main ()

{
arena objl;
objl.getdata() ;
objl.showdata() ;

return 0;

Output:

Enter Seat Section & Cost:
4

3500

Enter guest4

Enter 1 Section Spectators 230
Enter 2 Section Spectators 345
Enter 3 Section Spectators 445
Guest count= 4

1Section Spectators= 230

2Section Spectators= 345
3Section Spectators= 445%

114 « C++ PROGRAMMING FUNDAMENTALS

Code Debriefing

= In this code, we established a relationship between three classes using
multiple inheritance.

= Here, the child class will be able to inherit and even modify properties
from the two parent classes, as their access is declared in the base class.

= The objects of the child class can access all the members, except the
private ones of the base or parent class.

4. Virtual Inheritance

Virtual inheritance comes into play when we have multiple inheritance,
but the two classes inheriting from one super class in different base class-
es have the same name. Now, the child of these two base classes will have
two copies of the super class methods from both the parents, which is
referred to as the diamond problem. The diamond problem occurs when
an object accessing a method by a name will get confused as to which
inherited method of the super class is being called. The solution to this
problem is using the virtual inheritance feature in C++, where the two
parents inherit virtually from the super class.

Diamond
Problem

Figure 6.5 Virtual inheritance
The syntax for virtual inheritance is as follows:

class A
{

// class body
}i

class B : accessMode virtual A
{

// class body
bi
class C : accessMode virtual A
{

// class body
bi
class D : accessMode B, accessMode C
{

// class body
bi

Code: Working with Virtual Inheritance

#include <iostream>
using namespace std;
class pg
{
public:
int age;
void displayl ()
{
cout<<"Enter your age'"<<endl;
cin>>age;

}i

class student : public virtual pg
{
public
string name;
void display2 ()
{
cout<<"Enter your name"<<endl;
cin>>name;

bi
class exam: public virtual pg

{
public

INHERITANCE © 115

116 » C++ PROGRAMMING FUNDAMENTALS

int ecode;

void display3 ()

{
cout<<"Enter exam code"<<endl;
cin>>ecode;

}i
class external : public student, public exam
{
public
int marks;
void display4 ()
{
cout<<"Enter your Level 1 marks"<<endl;
cin>>marks;
}
void check ()
{
if ((age>17)&& (marks>65))
{
cout<<"\nAllowed for Level 2 Examination\n";
}
else
cout<<"Start looking for backups";

}i
int main()
{

external e;

cout<<"Enter your valid information"<<endl;
.displayl () ;
.display2 () ;
.display3() ;

()7

.display4 () ;
.check () ;

return 0;

® ® ® ® O

Output:

Enter your valid information
Enter your age

INHERITANCE © 117

20

Enter your name

Yash

Enter exam code

23099

Enter your internal marks

68

Allowed for externals

Code Debriefing

In this code, we established a relationship between two classes using
virtual inheritance.

This was needed to resolve the issue with multiple inheritance.

Here, only the child class will now be able to inherit and modify
properties from the parent class, as all the members have the same
access that is declared in the base class.

The objects of the child class can access all the members, except the
private ones of the base or parent class.

Hierarchical Inheritance

Hierarchical inheritance is when a single base class inherits multiple de-
rived classes. This inheritance has a tree-like structure, since every class
acts as a base class for one or more child classes. The syntax for hierarchi-
cal inheritance is as follows:
class A
{
// class body
i
class B : accessMode A
{
// class body
i
class C : accessMode A
{
// class body
i
class D : accessMode B
{
// class body
i

118 ¢« C++ PROGRAMMING FUNDAMENTALS

class E : accessMode C
{

// class body
i

D E

J

Figure 6.6 Hierarchical inheritance

,

Code: Working with Hierarchical Inheritance

#include <iostream>
using namespace std;
class flCar
{
protected
string team;
public:
void getdata ()
{
cout<<"Enter team name"<<endl;
cin>>team;
}
void showdata ()
{
cout<<"Team Name : "<<team<<endl;

bi
class engine : public flCar
{
protected
int LmotrNO;
public:
void getdata ()

flCar :: getdata();

cout<<"Enter light motor number: ";

cin>>LmotrNO;
}
void showdata ()
{
flCar:: showdata();
cout<<"LMotor No = "<<LmotrNO<<endl;

}i
class hyrdrolic : public flCar
{
protected:
float price;
public
void getdata ()

flCar :: getdata();
cout<<"Enter heavy motor price: ";
cin>>price;
}
void showdata ()
{
flCar :: showdata();

cout<<"HMotor Price = "<<price<<endl;

bi
class fuel: public engine
{

protected

int capacty;

public:

void getdata ()

{

engine :: getdata();
cout<<"Enter Gear motor capacity: "
cin>>capacty;

’

INHERITANCE © 119

120 ¢ C++ PROGRAMMING FUNDAMENTALS

void showdata ()
{
engine :: showdata();

cout<<"GMotor Capacity = "<<capacty<<endl;;

}i
class nofuel : public engine
{

protected

int capacty;

public:

void getdata ()

{

engine :: getdata();
cout<<"Enter Non Gear motor capacity: ";
cin>>capacty;

}

void showdata ()

{

engine :: showdata();

cout<<"NonGMotor Capacity = "<<capacty<<endl;;

}i
class race : public hyrdrolic
{
protected
int passNo;
public:
void getdata ()
{
hyrdrolic :: getdata();
cout<<"Enter passenger capacity: ";
cin>>passNo;
}
void showdata ()
{
hyrdrolic:: showdata();
cout<<"Passenger Capacity = "<<passNo<<endl;;

INHERITANCE © 121

}i
class sprint : public hyrdrolic
{
protected
int maxLoad;
public:
void getdata ()
{
hyrdrolic :: getdata();
cout<<"Enter max goods load: ";
cin>>maxLoad;
}
void showdata ()
{
hyrdrolic :: showdata();
cout<<"GMotor Capacity = "<<maxLoad<<endl;;

}i
int main ()
{
fuel f1;
race rl;
cout<<"Enter details of vehicle: "<<endl;
fl.getdata();
rl.getdata () ;
cout<<"Vehicle Specifications are: "<<endl;
fl.showdata() ;
rl.showdata() ;

Output:

Enter details of vehicle:

Enter team name

Redbull

Enter light motor number: 27789
Emter Gear motor capacity: 4900
Enter team name

Redbull

Enter passenger capacity: 1
Vehicle Specifications are:
Team Name : Redbull

122 ¢ C++ PROGRAMMING FUNDAMENTALS

LMotor No = 27789
GMotor Capacity = 4900
Team Name : Redbull
HMotor Price = 450000
Passenger Capacity =1

6. Hybrid Inheritance

Lastly, hybrid inheritance is a mixture of all the types of inheritance we
have learned.

Code: Working with Hybrid Inheritance

#include <iostream>
using namespace std;
class pg
{
public:
int age;
void displayl ()
{
cout<<"Enter your age'"<<endl;
cin>>age;

i

class student : public pg
{
public
string name;
void display2 ()
{
cout<<"Enter your name"<<endl;
cin>>name;

}i

class exam

{
public
int ecode;
void display3 ()

INHERITANCE © 123

cout<<"Enter exam code"<<endl;
cin>>ecode;

bi
class external : public student, public exam
{
public
int marks;
void display4 ()
{
cout<<"Enter your Levell marks"<<endl;
cin>>marks;
}
void check ()
{
if ((age>17)&& (marks>65))

cout<<"\nAllowed for Level 2 Examination :)\n";
}
else
cout<<"Start looking for backups : ((\n";

i

int main()
{
external e;
cout<<"Enter your valid information"<<endl;
.displayl () ;
.display2() ;
.display3();
.display4 () ;
.check () ;
return 0;

® ® ® ® O

124 + C++ PROGRAMMING FUNDAMENTALS

Output:

Enter your valid information
Enter your age

20

Enter your name

Mick

Enter exam code

203

Enter your Level 1 marks

24

Start looking for backups

6.4 Constructor Calling

In the previous chapter, we discussed class making and methods, as well as
special methods like constructors and their various types. There, we dealt
with only a single class, but with inheritance, there will always be more than
one class. How does constructor calling work? Let’s take a look.

Remember

= The base class constructor is always called first, irrespective of the
object made.

= Derived class object creation results in initializing all of its members,
but it has inherited members, too. Hence, the base class constructor is
called first to enable all members to initialize in the derived class.

= In the case of multiple inheritance, the base class order of placement
will decide which constructor is called.

= Destructors are always called in the opposite order of the constructors.

The syntax for calling a constructor is as follows:

class A
{
//class body
A();
bi
class B : accessMode A
{
// class body
B();

INHERITANCE © 125

i
class C : accessMode B

{
// class body
cO) i

i

C object;
Al)

B()

C()

Figure 6.7 Constructor order

~C()

~B()

~A()

Figure 6.8 Destructor order

6.5 Implementing Inheritance

Inheritance is an important object-oriented programing concept that you
use with classes. A few of the advantages of inheritance are as follows:

1. Code reusability: As the relationship between parent and child classes
allows for the sharing of methods, we do not need to write the same code
body again and again.

2. Structure: It makes code easier to understand, as methods do not repeat
and the child objects can access all the inherited methods.

126 C++ PROGRAMMING FUNDAMENTALS

3. Efficiency: Inheritance saves a lot of time and energy in fetching data
from one class to obtain the result.

4. Extensibility: Classes (as well members) are able to extend their features
and functionalities through derived or child classes.

The following example of inheritance highlights its importance and ease of
use.

Code: Programming with Inheritance

finclude <iostream>
using namespace std;
class person
{
public:
int age;
void displayl ()
{
cout<<"Enter your age"<<endl;
cin>>age;

}i
class student : public person
{
public
int ugYear;
void display2 ()
{
cout<<"Enter your Under Graduate passing Year"<<endl;
cin>>ugYear;

}i
class exam: public student
{
public
void check ()
{
if ((age>18) && (ugYear== 2021 || ugYear== 2022))
cout<<"You Can appear for CAT 2022"<<endl;
else

cout<<"Sorry you Cannot appear for CAT 2022"<<endl;

INHERITANCE © 127

i

int main ()
{
exam e;
cout<<"Enter wvalid information"<<endl;
e.displayl () ;
e.display2 () ;
e.check () ;
return 0;

Output:

Enter valid information

Enter your age

19

Enter your under Graduate passing year
2023

Sorry you cannot appear for CAT 2022

Do your own “code debriefing” of this code and try making your own
versions of inheritance in C++.

Summary

= Inheritance in C++ allows a child class to inherit features of its parent
class.

= The parent class (or the base class or super class) is a single entity that
existed before the child class, and all its children inherit properties from
it.

» The child class (or the derived class or sub class) is made out of certain
features of the base class.

= Data members declared public can be accessed by any class, irrespective
of the relationship its class has with other classes.

= Data members declared private have limited access available to only the
base, friend, and derived classes.

= Data members declared protected can be accessed by base class
members and friend classes.

128 -

C++ PROGRAMMING FUNDAMENTALS

» Inheritance in C++ can be done in various forms and combinations.

There are several types of inheritance that can be implemented: single,
multilevel, multiple, virtual, hierarchical, and hybrid.

The base class constructor is always called first irrespective of the
number of objects made.

Destructors are called in the opposite order of the constructors.

Inheritance advantages are as follows: code reusability, structure,
efficiency, and extensibility.

Exercises

Theory Questions

1.

What is inheritance? Explain the need for inheritance with suitable
examples.

. What are the differences between the access specifiers private and

protected?

3. What are base and derived classes?

. Explain the syntax for declaring the derived class. Draw an access

privilege diagram for the members of a base and a derived class.

. What are the different forms of inheritance supported by C++? Explain

them with an example.

. Can a base class access members of a derived class? Give reasons.

. What is accessibilty mode? What are the different inheritance visibility

modes supported by C++?

. What are the differences between inheriting a class with public and

private visibility modes?

Practical Questions

1.

Write a program in C++ to create a base class called Stack and a
derived class called MyStack. Write a program to use these classes for
manipulating objects.

2. Write a program in C++ to declare two classes named Window and

Door. Derive a new class called House from those two classes. The
Window and Door base classes must have attributes that reflect a happy

INHERITANCE © 129

home. All classes must have interface functions, such as overloaded
stream operator functions for reading and displaying attributes. Write
an interactive program that can be used to model this relationship.

3. Write a program in C++ to depict multilevel inheritance using real life
entities.

4. Write a program in C++ to create a relation between grandparent and
grandchild classes with overriding methods in both.

5. Write a program in C++ to show access to private, public, and protected
classes using inheritance.

6. Write a program in C++ to depict a constructor’s purpose in single
inheritance.

7. Write a program in C++ to depict a constructor’s purpose in multilevel
inheritance.

8. Write a program in C++ to depict a constructor’s purpose in multiple
inheritance.

9. Write a program in C++ to depict a constructor’s purpose in hierarchical
inheritance.

10. Write a program in C++ to depict a constructor’s purpose in virtual
inheritance.

11. Write a program in C++ to depict a constructor’s purpose in hybrid
inheritance.

MCQ-Based
1. What is inheritance in C++7?
a. Wrapping of data into a single class
b. Deriving new classes from existing classes
c. Overloading of classes

d. Classes with the same names

2. Which of the following statement is correct about virtual inheritance?

a. It is a technique to ensure that a private member of a base class can
be accessed.

b. It is a technique to optimize multiple inheritances.

130 ¢ C++ PROGRAMMING FUNDAMENTALS

c. It is a technique to avoid the multiple inheritances of the classes.

d. It is a technique to avoid creating multiple copies of the base class
code for the derived or child classes.

3. If a class is derived privately from a base class, then
a. no members of the base class are inherited.
b. all members are accessible by the derived class.

c. all the members are inherited by the class, but are hidden and cannot
be accessed.

d. no derivation of the class gives an error.

4. What will be the output of the following C++ code?

#include <iostream>
#include <string>
using namespace std;
class A
{ float d;
public:
virtual void func () {
cout<<"Hello this is class A\n";
} }i
class B: public A
{
int a = 15;
public:
void func () {
cout<<"Hello this is class B\n";

}i
int main(int argc, char const *argv([])
{

A *a = new A();

B b;

a = &b;

a->func () ;

return O;

}
a. Hello this is class A

b. Hello this is class B

INHERITANCE © 131

c. Error

d. Segmentation Fault

5. Write the output of the following code.

#include <iostream>
#include <string>
using namespace std;
class A
{

float d;

public:
virtual void func () {

cout<<"Hello this is class A\n";

}i
class B: public A
{
int a = 15;
public:
void func () {

cout<<"Hello this is class B\n";

}i
int main(int argc, char const *argv([])
{

A *a;

a->func () ;

return 0;

}
a. Hello this is class A

b. Hello this is class B
c. Error

d. Segmentation Fault

6. What will be the output of the following C++ code?
#include <iostream>
#include <string>
using namespace std;
class A{
float d;

132 ¢ C++ PROGRAMMING FUNDAMENTALS

public:
virtual void func () {
cout<<"Hello this is class A\n";

i

class B: public Af{
int a = 15;
public:
void func () {
cout<<"Hello this 1is class B\n";

i

int main(int argc, char const *argv([])
{

B b;

b.func();

return 0;

}
a. Hello this is class B

b. Hello this is class A
c. Error

d. Segmentation fault

7. What will be the output of the following C++ code?

#include <iostream>
#include <string>
using namespace std;
class A
{

float d;

public:
A()A{
cout<<"Constructor of class A\n";

}i
class B: public A

{
int a = 15;

INHERITANCE © 133

public:
B(){

cout<<"Constructor of class B\n";
i

int main(int argc, char const *argv[])

{
B b;
return 0;

a. Constructor of class A Constructor of class B
b. Constructor of class A
c. Constructor of class B

d. Constructor of class B Constructor of class A

8. What is the syntax of the inheritance of a class?
a. class name
b. class name: access specifier
c. class name: access specifier class name

d. None of the above

9. How many types of inheritance are there in C++?
a. 2
b. 3
c. 4
d.6

10. What is meant by multiple inheritance?
a. Deriving a base class from a derived class
b. Deriving a derived class from a base class
c. Deriving a derived class from more than one base class

d. None of the above

134 ¢ C++ PROGRAMMING FUNDAMENTALS
11. Which of the following advantages do we lose by using multiple inheri-
tance?
a. Dynamic binding
b. Polymorphism
c. Botha&b
d. None of the above

12. Which symbol is used to create multiple inheritance?
a. Dot
b. Comma
c. Dollar

c. None of the above

13. What is inherited from the base class?
a. Constructor and its destructor
b. Operator=() members

c. Friends

d. All of the above

14. What will be the output of the following program?

NOTE This code includes all the required header files.

class find {
public:
void print () { cout <<" In find"; }
}i
class course : public find {
public:
void print () { cout <<" In course"; }
bi
class tech: public course { };
int main (void)
{
tech t;

t.print();
return 0;

}
a. In find

b. In course

c. Compiler Error: Ambiguous call to print()

d. None of the above

INHERITANCE © 135

15. Assume that an integer takes 4 bytes and there is no alignment in the

following classes. Predict the output.
#include<iostream>

using namespace std;

class base {

int arr[10];
}i
class bl: public base { };
class b2: public base { };

class derived: public bl, public b2

int main (void)
{
cout << sizeof (derived) ;
return 0;

}
a. 40

b. 80
c. 0
d. 4

16. What is the output of the following program?
#include<iostream>

using namespace std;

class Base {
private:
int i, 37
public:
Base(int i =0, int j = 0): 1(1),

}i

136 C++ PROGRAMMING FUNDAMENTALS

class Derived: public Base {
public:
void show () {
cout<<™ i = "<<i<<" J = "<<J;
}
}i
int main (void) {
Derived d;
d.show () ;
return 0;

}
a.i=0j=0
b. Compiler Error: i and j are private in Base
c. Compiler Error: Could not call constructor of Base
17. A class serves as a base class for many derived classes; this is called
a. polymorphism
b. multipath inheritance

c. hierarchical inheritance

d. none of the above

References

Books

= B. Stroustrup, The C++ Programming Language (4th Edition)
(Addison-Wesley Professional, 2013).

= K. R. Venugopal, Mastering C++ (2nd Edition) (McGraw Hill
Education, July 2017).

= Y. Kanetkar, Let Us C++ (BPB Publications September, 2020).
m Y. Kanetkar, Test Your C++ Skills (BPB Publications March, 2003).

INHERITANCE © 137

Websites

Learn CPP, accessed July 2022, https://www.learncpp.com

Codes Cracker, accessed July 2022, hitps://codescracker.com

Geeks For Geeks, accessed July 2022, https://www.geeksforgeeks.org
Udacity, accessed July 2022, https:/www.udacity.com

Scaler, accessed July 2022, https://www.scaler.com

C Plus Plus, accessed July 2022, https://cplusplus.com

Silly Codes, accessed July 2022, https://sillycodes.com

CHAPTER

POLYMORPHISM

7.1 Introduction

Another important object-oriented programming concept is polymorphism.
We briefly touched on it in the first chapter with the Formula 1 example.
Polymorphism provides us with multiple forms of a method with different
signatures but the same name. Methods can exist in multiple forms by
varying the types of parameters and the number of parameters they take
in the signature of a function. For example, in Formula 1 racing, there
are 10 teams with 2 drivers each. Both drivers are provided with the
same equipment and car specifications. However, the result attained by
the drivers and their teams always differs as the car (which would be our
programming method. has been modified into completely different styles:
an F1 car can exist in different forms.

Driver 1 Result

Driver 2 Result

Figure 7.1 Polymorphism

140 « C++ PROGRAMMING FUNDAMENTALS

There are two major types of polymorphism: compile-time polymorphism
and runtime polymorphism. (These have subcategories, and the way they
are implemented is discussed later.)

Polymorphism

Compile-time Runtime

I

Function

Operator
Overloading

Virtual
Functions

Function

Overloading Overriding

Figure 7.2 Polymorphism types

Let’s consider an example of display function overloading and how
polymorphism works. Here, the syntax is the same as that of the functions
we learned before.

Code: Using Polymorphism and Function Overloading

#include <iostream>
using namespace std;
void display (int i)
{
cout << " Integer is " << 1 << endl;
}
void diaplay (double f)
{
cout << "Float is " << f << endl;
}
void display (char const *c)
{
cout << " Character is " << ¢ << endl;

int main()

{
display (11);
display (11.11);
display ("Eleven");
return O

’

PoLymorpHIsM © 141

Output:

Integer is 11
Integer is 11
Character is Eleven

Code Debriefing

= This code shows that the display function of our class exists in multiple
forms.

= This type of polymorphism is implemented using function overloading.

= The functions all have the same name but different signatures. That is,
they have different combinations and numbers of parameters.

= While calling the display function, keep in mind which signature calls
which function.

Code: Polymorphism and Addition Methods

#include <iostream>

using namespace std;

int add(int numl, int num2) {
return numl + num2;

}

double add(float numl, double num2) {
return numl + num2;

}

int add(int numl, float num2, int num3) {
return numl + num2 + num3;

}

int main() {
cout << "\nPolymorphism of addition method " << endl;
cout << "Addition method 1 = " << add(87, 45) << endl;
cout << "Addition method 2 = " << add(90.5, 63.6) << endl;
cout << "Addition method 3 = " << add (51, 5.6, 33) << endl;

return O;

Output:

Polymorphism of addition method
Addition method 1 = 132
Addition method 2 = 154.1
Addition method 3 89

142 + C++ PROGRAMMING FUNDAMENTALS

Code Debriefing
= In this code, the addition function of our class exists in multiple forms.

= This type of polymorphism is implemented using the function
overloading of the addition method.

= The functions all have the same name, but different signatures. That is,
they have different combinations and numbers of parameters.

= While calling the display function, keep in mind which signature calls
which function.

7.2 Dynamic vs. Static Binding

Table 7.1 Dynamic and static binding

Dynamic Binding Static Binding
Dynamic or late binding tells which Static or early binding tells which procedure
procedure will be called at runtime. will be called at compile time.

The code inside our procedure is not known | The code inside our procedure is known
until execution, hence the name late binding. | before execution, and both join together
at execution time, hence the name early

binding.
It is implemented in C++ using virtual It is implemented in C++ using normal
functions. function calls, function overloading, and

operator overloading.

The execution of a program is slower. The execution of a program is faster.

Runtime polymorphism is also another name | Compile-time polymorphism is also another
for it. name for it.

Code: Static binding

#include <iostream>
using namespace std;
class person
{
public:
int age;
void displayl ()
{
cout<<"Enter your age'"<<endl;
cin>>age;

PoLymorpHIsM © 143

bi
class student : public person
{
public
int ugYear;
void display2 ()
{
cout<<"Enter your Undergraduate Year "<<endl;
cin>>ugYear;

bi
class exam: public student
{
public
void check ()
{
if((age>18) && (ugYear== 2021 || ugYear== 2022))
cout<<"You can appear for Common Admission Test
2022"<<endl;
else
cout<<"Sorry, you cannot appear "<<endl;

i

int main ()
{
exam e;
cout<<"Enter your valid information"<<endl;
e.displayl () ;
e.display2 () ;
e.check () ;
return 0;

Output:

Enter your valid information
Enter your age

144 + C++ PROGRAMMING FUNDAMENTALS

21

Enter your Undergraduate Year
2024

Sorry, you cannot appear

Code Debriefing

= This code shows that the display function of our class exists in multiple
forms.

= Static binding is implemented here using function overloading.

= The functions all have the same name, but different signatures. That is,
they have different combinations and numbers of parameters.

= While calling the display function, keep in mind which signature calls
which function.

= Here, the compiler gets to know about the code attached to the function
call only at compile time.

Code: Dynamic binding

#include <iostream>
using namespace std;
class person
{

public:

virtual void display ()

{

cout<<"Enter your age"<<endl;

bi
class student : public person
{
public
void display () //overridden
{
cout<<"Enter your Under Graduaate Year"<<endl;
}
bi

int main ()

{

person e;

7.3

PoLymorpHIsSM © 145

student s;

cout<<"Please enter your information "<<endl;
s.display () ;
e.display () ;

return 0;

Output:

Please enter your information
Enter your undergraduate Year
Enter your age

Code Debriefing

= This code shows that the display function of our class exists in multiple
forms.

= Static binding is implemented using function overloading.

= The functions all have the same name, but different signatures. That is,
they have different combinations and numbers of parameters.

= While calling the display function, keep in mind which signature calls
which function.

= Here, the compiler gets to know about method attached to the function
call only at runtime.

Interface and Implementation

Sometimes, a code block must be redefined again and again due to the
needs of the child classes. For this, C++ provides interfaces, which lead to
no direct implementation and only declare methods. Let us look at some of
the features of an interface:

a. No method of implementation is given; they only deal with the decla-
ration part.

b. It is the responsibility of the class that implements an interface to
implement the methods, as well.

c. We cannot define variables inside our interface.

146 C++ PROGRAMMING FUNDAMENTALS

Code: Working with Interfaces

#include <iostream>

using namespace std;

class myInterface

{

public:

virtual void Purely() = 0;

void methodl ()

{

cout<<"\nParent class method"<<endl;
}

}i

class childl: public myInterface

{

public:

void Purely ()

{

cout<<"\nParent method redefined"<<endl;
}

}i

int main()

{
cout<<"\nInterfaces"<<endl;
childl cl;

cl.Purely();

cl.methodl () ;

return 0;

}

Output:

Interfaces
Parent method redefined
Parent class method

Code Debriefing
= Here, the interface concept is being applied.
= Static binding is implemented using function overloading.

= The method is redefined in the child class as it can inherit and modify
properties.

PoLymorpHIsM © 147

The following are few more terms and their definitions to make the interface
concept in C++ clearer.

a. Avirtual function is a type of function that is declared as well as defined
in the parent or base class and redefined in the child class.

b. A pure virtual function is a type of function that is only declared but
never implemented or redefined.

c. An abstract class (ABC) is a type of class that has only a pure virtual
function. This means that it is only declared and never defined, which
helps all child classes to inherit and redefine the members as needed.
This type of class cannot be instantiated by directly creating an object,
but it can be instantiated through implementing an interface. All pure
virtual functions of the class need to be overridden or else an error may
occur. The syntax for this is as follows:

virtual void functionName () = O0;
Code:

#include <iostream>
using namespace std;
class parentc
{

public :

virtual int pro()=0;
protected:
int avgSal=230000;

bi
class PublicChildl : public parentc
{
public:
virtual int pro()
{
return (avgSal+9000) ;
}
bi

class PublicChild2: public parentc
{

public:

virtual int pro()

148 * C++ PROGRAMMING FUNDAMENTALS

return (avgSal+12000);
}
i

int main ()
{
PublicChildl objl;
PublicChild2 obj2;
cout << "\nPublic child 1 average salary is "
<< objl.pro() << endl;
cout << "\nPublichild2 average Salary is " << obj2.pro()
<< endl;
cout<< "\n";

return 0;

Output:

Public child 1 average salary is 239000
Publicchild? average Salary is 242000

Code Debriefing
= In this code, the virtual function of our class exists in multiple forms.

= While calling the display function, keep in mind which signature calls
which function.

Code:

#include <iostream>

using namespace std;

class ABC

{

public:

virtual void Purely () = 0;
bi

class childl: public ABC

{

public:

void Purely ()

{

cout<<"\nParent method redefined by childl"<<endl;
}

PoLymorpHIsM © 149

bi

class child2: public ABC
{

public:

void Purely ()

{

cout<<"\nParent method redefined by child2"<<endl;
}

bi

int main ()

{

childl cl1;

child2 c2;

cl.Purely () ;
c2.Purely () ;

return 0;

}

Output:

Parent method redefined by childl
Parent method redefined by child2

7.4 Function Overriding and Overloading

Now we move onto a type of polymorphism we will be using frequently
and that is implemented through functions and their different states. (You
should practice this concept by redefining the state and type of function
you create and observe how the calling of these using objects takes place.)

Table 7.2 Function overloading and overriding

Function Overloading Function Overriding

Compile-time polymorphism implementation | Runtime polymorphism implementation

No inheritance required Inheritance is always required

Function overloaded with the same name but | Function overridden with the same name
different signatures and signatures

Parameter type, number, and order can be Parameter type, number, and order need not
changed be changed

Function call determined on the basis of Function call determined on the basis of
signature done at compile time signature done at runtime

Overloading may occur multiple times Overriding occurs only once in a C++

program

150 ¢ C++ PROGRAMMING FUNDAMENTALS

The following examples showcase how functions in C++ are overloaded and
overridden.

Code: Working with Overloaded Functions

#include <iostream>
using namespace std;
void display (int i)
{
cout << " Integer 1is " << 1 << endl;
}
void diaplay (double f)
{

cout << "Float is " << f << endl;

}

void display (char const *c)

{

cout << " The number of characters is " << ¢ << endl;

int main ()
{
cout<<"To show function Ooverloading "<<endl;
display (11);
display (11.11);
display ("Eleven");
return O;

Output:

To show function overloading
Integer is 11
Integer is 11

The number of characters is Eleven

Code Debriefing
= In this code, the display function of our class exists in multiple forms.
= Polymorphism is being implemented using function overloading.

= The functions all have the same name, but different signatures. That is,
they have different combinations and numbers of parameters.

= While calling the display function, keep in mind which signature calls
which function.

PoLymorpHIsM © 151

Code: Function Overloading of the Addition Method

#include <iostream>

using namespace std;

int add(int numl, int num2) {
return numl + num2;

}

double add(float numl, double num2) {
return numl + num2;

}

int add(int numl, float num2, int num3) {
return numl + num2 + num3;

int main() {
cout << "Addition method 1 = " << add (87, 45) << endl;
cout << "Addition method 2 = " << add(90.5, 63.6) << endl;
cout << "Addition method 3 = " << add (51, 5.6, 33) << endl;
return 0;

}

Output:

Addition method 1 = 132
Addition method 2 = 154.1
Addition method 3 = 89

Code Debriefing

= This code shows that the addition function of our class exists in multiple
forms.

= This type of polymorphism is implemented using function overloading
of the addition method.

= The functions all have the same name but different signatures. That is,
they have different combinations and numbers of parameters.

= While calling the display function, keep in mind which signature calls
which function.

Code:

#include <iostream>
using namespace std;

152 ¢ C++ PROGRAMMING FUNDAMENTALS

class person
{
public:
int age;
void display ()
{

cout<<"Enter your age"<<endl;
cin>>age;

i
class student

{

public person

public

int ugYear;
void display ()
{

cout<<"Enter your Under GraduateYear"<<endl;
cin>>ugYear;

}i
class exam: public student
{

public

void check ()

{

if ((age>18) && (ugYear== 2021 || ugYear== 2022))

cout<<"You can appear for Common Admisiion Test
2022"<<endl;
else?2

cout<<"Sorry you cannot appear for Common Admission
Test 2022"<<endl;

i

int main ()
{

exam e;

PoLymorpHIsM © 153

cout<<"To show function overriding"<<endl;
cout<<"Please enter your information "<<endl;
e.display () ;

e.check () ;

return 0;

Output:

To show function overriding

Please enter your information

Enter your Undergraduate Year
2023
Sorry you can not appear for Comman Admission Test 2022

Code Debriefing

7.5

This code shows that the display function of our class exists in multiple
forms.

This type of polymorphism is implemented using function overriding of
the display method.

It is overridden in the child class, as it is inherited from the base class.

The functions all have the same name but different signatures. That is,
they have different combinations and numbers of parameters.

While calling the display function, keep in mind which signature calls
which function.

Friend and Generic Functions

7.5.1

Friend Functions

The friend function is a non-member function of a class that has access as a
normal function but is declared with the keyword friend.

Features of friend functions

Declared with the friend keyword only once, either with a global scope
or in another class.

It can have any type of access in a class: public, private, or protected.
Friend functions are called upon without any object or dot operator.

Objects can be passed as arguments.

154 « C++ PROGRAMMING FUNDAMENTALS

= It has access to all data members of a class (including private), even
though it is a non-member function.

= Friend relationships cannot be inherited. The syntax for a friend
function is as follows:

class OurClass
{ //body

friend returnType Myfunction (Paramters list..);
}i

Code: Using the Friend Function

#include <iostream>
using namespace std;
class myclass

{

friend int myfriend(int a, int Db);

i
int myfriend(int a, int b)

{

return a+t+b;

int main ()

{
int a,b;
cout<<"Enter numbers to add"<<endl;
cin>>a>>b;
cout<<"Addition gives "<<myfriend (a,b)<<endl;
return 0;

Output:

Enter numbers to add
23

567

Addition gives 590

Code Debriefing
= This code shows how the friend function is made.

» This function can be declared inside a class and defined outside the
class.

PoLymorpHIsM © 155

7.5.2 Generic Functions

In a situation where a normal function is used more than once, we need
parameters on which the function acts to be of different data types. This is
made possible using generic functions in C++. These act as a template for
different types of parameters to give the desired results.

Features of Generic Functions

= Act like macros and body expanded at compile time to receive
arguments

= Source code serves as a template and so the code is the same for all
functions, but when the different copies of the code are compiled, there
are differing results because there are different argument types.

= Class templates can also be used in a similar fashion as generic
functions.

= These functions help decrease function overloading.

= Parameters can also be given a default value, if needed.

The syntax for a generic function is as follows:

template <typename T> T mytemplate (T paramterl, T parameter2)
{

//template body
}

Code: Generic Functions and Swapping Numbers

#include <iostream>
using namespace std;
class myclass
{

public:

void swapR(int &a,int &b)

{

cout<<"Swapping using the call by reference changes what
is visible "<<endl;

a= a+t+b;
b= a-b;
a= a-b;

}
void swapP(int *a,int *Db)

{

156 C++ PROGRAMMING FUNDAMENTALS

cout<<"Swapping by using the call by pointers "<<endl;
*a= *a + *b;
*b: *a _ *b;

*g= *g - *b,‘
}
}el;
int main ()
{
int a,b;
cout<<"Enter numbers to swap"<<endl;
cin>>a>>b;
cout<<"After swapping A= "<<a<<" B="<<b<<endl;
cl.swapR(a,b);
cout<<"After swapping A= "<<a<<" B="<<b<<endl;
cl.swapP (&a, &b) ;
cout<<"After swapping A= "<<a<<" B="<<b<<endl;
return O;
}
Output:
Enter numbers to swap
23
67

After swapping A= 23 B=27

Swapping using the call by reference changes what is visible
After swapping A= 67 B=23

Swapping by using the call by pointers

Code: Using a Template to Swap Numbers

#include<iostream>
using namespace std;

template <class T, class T1>
void swap(T &a,Tl &b)
{

T temp=a;

a=b;

b=temp;

int main ()

{

PoLymorpHIsM ¢ 157

int x;

float y;

cout<<"Enter the value of x and y "<<endl;
cin>>x>>y;

cout<<"Before Swapping";
cout<<"\nx1="<<x<<"\tyl="<<y;

swap (x,V) s

cout<<"\nAfter Swapping";
cout<<"\nx1="<<x<<"\tyl="<<y;

return 0;

Output:

Enter the value of x and y
34

78

Before Swapping

x1=34 y1=78

After Swapping

x1=78 y1=34%

7.6 Namespaces

Namespaces in C++ logically organize of all our identifiers (variables,
methods, and classes) so they are defined and declared under one name or
a space. This creates a logical border between various elements and scope
created to access the namespace members. In our program, we can either
use already defined namespaces like std: : or define our own space using
the keyword namespace.

Features of Namespaces

= Namespaces created with the same name but different states or scope
can exist in C++.

= No access specifiers are required for namespace declarations.

= The nesting of namespaces is possible (a namespace within another
namespace).

= Itis not a class, so no semicolon is used in the definition.

= Namespace declarations made will only be visible for a global scope.

158 ¢ C++ PROGRAMMING FUNDAMENTALS

The syntax for a namespace is as follows:

namespace Ournamespace

{
// namespace body
} Ournamespace: : identifiers any;

Code: Using Namespace

#include <iostream>
using namespace ;
namespace ourSpacel
{
void nFunc ()
{

cout << "\nFunction of ourSpacel called" << endl;
}
}
namespace ourSpace2
{
void nFunc ()
{

cout << "\nFunction of ourSpace2 called" << endl;
}
}
int main ()
{
ourSpacel: :nFunc () ;
ourSpace2: :nFunc () ;
return 0;

}

Output:

Function of ourSpacel called
Function of ourSpace called

Code Debriefing
= In this code, the namespaces are declared.
= Two functions are defined inside the namespaces.

= The function nrFunc is called upon using the scope resolution operator.

PoLymorpHIsM © 159

Summary

Polymorphism allows for multiple forms of a method with different
signatures but the same name.

Methods made can exist in multiple forms by varying in type of
parameters and number of parameters they take in the signature of a
function.

Dynamic or late binding tells which procedure will be called at runtime.

Static or early binding tells which procedure will be called at compile
time.

C++ provides interfaces that lead to no direct implementation and only
declare methods.

A virtual function is a type of function that is declared as well as defined
in the parent or base class and redefined in the child class.

A pure virtual function is a type of function that is only declared but
never implemented or redefined.

The abstract class (ABC) is a type of class that has only pure virtual
functions. This means that it is only declared and never defined; this
helps all child classes to inherit and redefine the members as they wish,
too.

Function overloading is done by giving functions the same name but
different signatures.

Function overriding is done by giving functions the same name and
signatures.

A friend function is a non-member function of a class that has access as a
normal function but is declared with the keyword friend.

Generic functions in C++ act as a template and use different types of
parameters to give the desired results.

Namespaces logically organize identifiers (variables, methods, and
classes) so they can be defined and declared under one name or a space.

160 ¢ C++ PROGRAMMING FUNDAMENTALS

Exercises

Theory Questions

1

. What is polymorphism in C++? Describe the syntax for using it with

examples.

. What are the different types of polymorphism available in C++?

. What is the difference between compile time and runtime

polymorphism?

. Discuss the concept of virtual and pure virtual functions in C++?

5. What do is meant by dynamic and static binding?

10.
11.

. How is runtime polymorphism implemented in C++? Explain with

examples.

. What are abstract classes? Explain few of their features.

. What is the use of a friend function in C++? Explain a few of its

features.

. What are templates in C++? Explain few of its features and how are

they are declared.
What are namespaces in C++? Explain few of their features.

Draw parallels between abstract and virtual functions in C++.

Practical Questions

1

. Write aprogram in C++ to demonstrate the use of runtime polymorphism.
. Write a program in C++ illustrating the use of pure virtual functions.

2
3.
4

Write a program in C++ to depict the use of the abstract keyword.

. Write a program in C++ to maintain an ecommerce database using

virtual functions.

. Write a program in C++ to use the concept of templates to find the

average of five inputs.

. Write a program in C++ to depict the use of an abstract base class.
. Write a program in C++ to implement the concept of namespaces.

. Write a program in C++ to show a student database using various

aspects of polymorphism.

PoLymorpHIsM © 161

MCQ-Based

1. Which of the following options correctly explains the concept of
polymorphism?

a. int func (float) ;
float func(int, int, char);
b. int func (int) ;
int func (int);
C. int func(int, int);
float funcl (float, float);
d. None of the above
2. Compile-time polymorphism in C++ language is
a. Operator overloading
b. Function overloading
c. Function overriding
d. B Only
e. A& B

3. If the same message is passed to objects of several different classes and
all of those can respond in a different way, what is this feature called?

a. Inheritance

b. Overloading
c. Polymorphism
d. Overriding

4. Which is the best description of polymorphism?

a. It is the ability for undefined message/data to be processed in at least
one way.

b. It is the ability for a message/data to be processed in more than one
form.

c. It is the ability for many messages/data to be processed in many ways.

d. None of the above

162 * C++ PROGRAMMING FUNDAMENTALS

5. The language that supports classes but not polymorphism is called what?
a. child-class-based language

b. class-based language
c. object-based language
d. procedure-oriented language
6. Which language does not support polymorphism but supports classes?
a. C#
b. Ada
c. C++
d. Java
7. Which type of function shows polymorphism?
a. Inline function
b. Virtual function
c. Undefined functions

d. Class member functions

8. When using an abstract class or function overloading, which function is
supposed to be called first?

a. Local function
b. Function with the highest priority in the compiler
c. Global function
d. None of the above
9. Which one of the following can’t be used for polymorphism?
a. Member functions overloading
b. Static member functions
c. Global member function
d. Constructor overloading

10. Which one of the following can show polymorphism?
a. Overloading ||

11.

12

13.

PoLymorpHIsSM © 163

b. Overloading &&

c. Overloading <<

d. Overloading +=

Two classes are derived from one base class and redefine a function
of the base class, also overloading some operators inside the body of

the class. Where should polymorphism be used, in the function or the
operator overloading?

a. Function overloading only
b. Operator overloading only

c. Either function overloading or operator overloading because polymor-
phism can be applied only once in a program

d. Both of these are using polymorphism

. Which of the following is not true for polymorphism?

a. [tis a feature of OOP.
b. Ease in the readability of a program
c. Helps in redefining the same functionality

d. Always increases the overhead of the function definition

Which class or set of classes can illustrate polymorphism in the following
code?

abstract class student

{

public : int marks;

calc _grade();

}

class topper:public student
{

public : calc grade()

{

return 10;

}

Vi

class average:public student
{

public : calc grade()

164 + C++ PROGRAMMING FUNDAMENTALS

14.

{

return 20;
}
i

class failed{ int marks; };

abstract class student

{
public : int marks;
calc grade();

}
class topper:public student

{
public : calc grade()

{

return 10;

}

}i

class average:public student

{
public : calc grade()

{

return 20;
}
i

class failed{ int marks; };

a. Only class student can show polymorphism

b. class student, topper and average together can show polymorphism
c. Only class student and topper together can show polymorphism

d. None of the above

What is the output of the following code?

class student

{

public

int marks;

void disp ()

{

cout<<"its base class";

}i

class topper:public student

1S5.

16.

{

public

void disp ()

{

cout<<"Its derived class";
}

}

void main() { student s; topper t;
s.disp();
t.disp();

}

a. its base class and then its derived class
b. its base class but not its derived class
c. its derived class and then its base class

d. None of the above

Runtime polymorphism is achieved only when a
through a pointer to the base class.

a. static function
b. real function
c. member function

d. virtual function

What is the output of the following program?

class education

{

char name[10];

public : disp{()

{

cout<<"Its education system";
}

class school:public education
{

public: void disp()

{

cout<<"Its school education system";
}

}i

void main ()

PoLymorpHIsSM © 165

is accessed

166 -

C++ PROGRAMMING FUNDAMENTALS

{

school s;
s.disp();
bl

a. its school education system

b. “its education system and Its school education system

[e]

. “its education system”

d

. None of the above

References

Books

B. Stroustrup, The C++ Programming Language (4th Edition)
(Addison-Wesley Professional, 2013).

K. R. Venugopal, Mastering C++ (2nd Edition) (McGraw Hill
Education, July 2017).

Y. Kanetkar, Let Us C++ (BPB Publications September, 2020).
Y. Kanetkar, Test Your C++ Skills (BPB Publications March, 2003).

Websites

Learn CPP, accessed July 2022, https://www.learncpp.com

Codes Cracker, accessed July 2022, https://codescracker.com

Geeks For Geeks, accessed July 2022, https:/www.geeksforgeeks.org
Programiz, accessed July 2022, hittps://www.programiz.com

Udacity, accessed July 2022, https://www.udacity.com

Scaler, accessed July 2022, https://www.scaler.com

C Plus Plus, accessed July 2022, https://cplusplus.com

Silly Codes, accessed July 2022, https://sillycodes.com

CHAPTER

OPERATOR OVERLOADING

8.1 Basics

Polymorphism provides us with multiple forms of a method with different
signatures but the same name. Methods can exist in multiple forms by
varying the types of parameters and number of parameters they take in the
signature of a function. As discussed in the previous chapter, polymorphism
encompasses the overloading and overriding of functions and virtual
functions. In this chapter, we will consider another type of overloading:
operator overloading.

Polymorphism

Virtual
Functions

Compile-time

Function

Function
Overriding

Operator
Overloading

Overloading

Figure 8.1 Polymorphism types

168 ¢ C++ PROGRAMMING FUNDAMENTALS

8.2 How to Overload an Operator?

Operator overloading is a type of compile-time polymorphism in which
the basic operators can be overloaded to give a functionality to a user-
defined data type. This helps redefine the operators and their operations
on operands available in C++ (except for the few as listed below): Even
operators can exist in different states of being in C++. Operators that
cannot be overloaded because they hold special and complex operability
are as follows:

= Scope resolution operator ::
B Sizeof operator

= Selector or dot operator .

= Pointer symbol *

= Ternary operator ?:

The syntax for operator overloading is as follows:

Return DataType MyClass : : operator operationName (Parameters
list..)

{
// function body

}

Before loading, check to ensure the following:

= When loading, there should be at least one operand to be operated on in
the new user data type.

= No new overloaded operators created can be overloaded again.

= We can even overload using the member method available in a class, but
no friend function can be used for this purpose.

= Depending on the type of operator used (whether unary or binary), the
member function used will take n+1 operands than in the definition of
the operators.

Code: Implementing Operator Overloading for ++ Operator

#include <iostream>
using namespace std;
class opOverload

{

OPERATOR OVERLOADING * 169

int m;
public:

opOverload ()
{

}

void wvalues ()

{

cout<<"\nEnter any number\n";
cin>>m;

void operator ++ ()

{

m++;

}
void display ()
{
cout<<"\nFirst Number now 1is "<<m<<endl;

int main ()

opOverload objl;
objl.values () ;
objl++;
objl.display () ;
return O;

Output:

Entry any number
33
First number now is 34

Code Debriefing
» In this code, we have created a class with a few methods.

= The values () method is used to accept input for data members from
the user.

170 ¢ C++ PROGRAMMING FUNDAMENTALS

= Here, the unary operator ++ is being overloaded and used with one

object (obj1).

= This overloading takes no parameter, and the values stored in obj1 are

changed.

= The code now displays the changes made. The overloading was
performed successfully.

Code: Implementing Operator Overloading

#include <iostream>
using namespace std;
class diff
{
public:
int m,n;
void display ()
{
cout<<"\nEnter any numbers\n";
cin>>m>>n;
}
diff operator == (diff objl)
{
if (m==n)
cout<<"Equal :)\n";
else
cout<<"Not Equal\n";

}
diff operator +=(diff objl)
{
m= m+2;
cout<<"\nFirst number now is "<<m<<endl;

i

int main ()

{
diff objl,obj2;
objl.display () ;
objl==0objl;
objl+=0objl;
return 0;

8.3

OPERATOR OVERLOADING © 171

Output:

Entry any numbers
23

56

Not Equal

First number now is 25

Code Debriefing
= In this code, we have created a class with few methods.

= The display method is used to take input for the data members from
the user.

= Here, the operators == and += are overloaded and used with op71.

= This overloading takes no parameter and the values stored in obj1 are

changed.

= The code now displays the changes made. The overloading was
performed successfully.

Overloading Unary Operators

To simply add two numbers (or perform any mathematical operations, such
as multiplication), we need the addition operator and the items/values to
add. Let’s consider an example: in the equation 6+7 = 13, + is the operator
and 6 and 7 are the integer values that are our operands. Unary operators
take only one operand, like -8, which signifies a value of negative 8. The ++
operator is an increment operator acting and modifying one value at a time.
In overloading this type of operator by taking only one operand, we made
it into polymorphic form. The syntax for overloading a unary operator is as
follows:

Return DataType MyClass : : operator operationName (Parameters
list..)

{
// function body

Code: Overloading a Unary Operator

#include <iostream>
using namespace std;

172 « C++ PROGRAMMING FUNDAMENTALS

class unaryl
{
int m;
public:

unaryl ()

{

}

void walues ()

{

cout<<"\nEnter any numbers\n";
cin>>m;

}

void operator ++ ()

{

m++;

}
void display ()
{
cout<<"\nFirst Number now is "<<m<<endl;

int main ()

unaryl objl,obj2;
objl.values () ;
objl++;
objl.display () ;

return O;

Output:

Enter any numbers
33
First Number now is 34

OPERATOR OVERLOADING * 173

Code Debriefing

In this code, we created a class with a few methods.

The values () method is used to accept input for data members from
the user.

Here, the unary operator ++ is overloaded and used with an object
(obi1).

This overloading takes no parameter and the values stored in obj1 get

changed.

The code now displays the changes made. The overloading was
performed successtully.

Code: Working with Unary Operators

#include <iostream>

using namespace std;

class unary2

{

int m;
public:

unary2 ()

{

}

void wvalues ()

{
cout<<"\nEnter any number\n";
cin>>m;

void operator ++()

{

m++;

}

void operator --()

{

m--;

174 + C++ PROGRAMMING FUNDAMENTALS

void display ()
{

cout<<"\nYour number now is "<<m<<endl;

bi

int main()

{
unary2 objl;
objl.values () ;
++obijl;
objl.display () ;
--objl;
objl.display () ;

return O;
}
Output:

Enter any number

23

Your number now is 24
Your number now is 23

Code Debriefing
» In this code, we created a class with few methods.

= The values () method is used to accept input for data members from
the user.

= Here, the unary operators -- and ++ are being overloaded and used with
objl.

= This overloading takes no parameter, and the values stored in obj1 are

changed.

= The code now displays the changes made. The overloading was
performed successtully.

8.4 Overloading Binary Operators

The second type of operators we have are binary operators, which use two
operands. For example, the insertion (<<) and extraction (>>) operators are
binary operators. In overloading this type of operator, we take two operands

OPERATOR OVERLOADING © 175

and make them into polymorphic form. The syntax for binary operators is
as follows:

Return DataType MyClass : : operator operationName (Parameters
list..)

// function body
}

Code: Overloading a Binary Operator

#include <iostream>
using namespace std;
class myclass
{
public:
int m,n;
void display ()
{
cout<<"\nEnter any two numbers\n";
cin>>m>>n;

int operator - ()

return m-n;

int main ()

myclass obj;

int r;

obj.display () ;
r= -obj;

cout<<"Difference is "<<r <<endl;
return 0;

Output:

Enter any two numbers
23
67

Difference is -44

176 ¢ C++ PROGRAMMING FUNDAMENTALS

Code Debriefing

In this code, we created a class with a few methods.

= The values () method is used to accept input for the data members

from the user.

= Here, the binary operator - is overloaded and used with op7.

= This overloading takes no parameter and returns with our result. The

values stored in the object (ob7) are changed.

= The code now displays the changes made. The overloading was

performed successfully.

Code: Working with Binary Operators

#include <iostream>
using namespace std;
class myclass
{
private:
int m;
public:

void wvalues ()

cout<<"\nEnter any number\n";
cin>>m;

myclass operator * (myclass &obj)
{
myclass t;
t.m= m* obj.m;
return t;

void display ()
{

cout<<"\nYour Result is "<<m<<endl;

bi

int main()

{
myclass objl,obj2,r;
objl.values () ;

OPERATOR OVERLOADING © 177

obj2.values () ;
r= objl*obj2;
r.display () ;
return 0;

Output:

Enter any number
48

Enter any number
122

Your Result is 5856
Code Debriefing

In this code, we created a class with a few methods.

» The values () method is used to accept input for data members from
the user.

= Here, the binary operator * used to perform multiplication is overloaded
and used with objects.

= An extra temporary object for our class is created inside the function
that stores changed values.

= This overloading takes one parameter and the values stored in the object

get changed.

= The code now displays the changes made. The overloading was
performed successtully.

Code: Working with Binary Operators

#include <iostream>
#include<string.h>
using namespace std;
class concat
{
char str[20];
public:

void input()

{

178 ¢ C++ PROGRAMMING FUNDAMENTALS

cout<<"\nEnter your string: ";
cin.getline (str, 20);

}
void display ()
{
cout<<"String: "<<str;

}

concat operator + (concat s)

{
concat obj;
strcat(str,s.str);
strcpy (obj.str,str);
return obj;

}i
int main ()

{

concat strl,str2,str3;
strl.input();
str2.input() ;
str3=strl+str?2;
str3.display () ;
return O;

Output:

Enter your string: Hello

Enter your string: learners!
String: Hellolearners!$

Code Debriefing

In this code, we created a class with a few methods.

» The input () method is used to accept data members from the user for
string data types.

= Here, the binary operator + is overloaded and helps concatenate the
entered strings.

8.5

OPERATOR OVERLOADING © 179
= Few of string inbuilt functions are used to overload and change
functionalities of the binary operator.

= This overloading takes one parameter, and the values stored in the
object are changed.

= The code now displays the changes made. The overloading was
performed successfully.

Overloading by Friend Function

Overloading in C++ of binary operators can also be done using a friend
function. Everything is the same for binary operator overloading, but the
difference lies in using the friend keyword. The implementation of this
friend function is to be carried outside our class.

Code: Overloading using a Friend Function

#include <iostream>
using namespace std;
class myclass {

public:
int m, n;
myclass ()
{
this->m = 0;
this->n = 0;

}
myclass (int x, int y)
{
this->m = x;
this->n= y;
}
friend myclass operator+ (myclass&, myclassé&);
bi

myclass operator+ (myclass& objl, myclassé& obj2)

{

myclass obj3;

obj3.m = objl.m + obj2.m;
obj3.n= objl.n+obj2.n;
return obj3;

180 ¢ C++ PROGRAMMING FUNDAMENTALS

int main ()

{

myclass objl (86, 99);

myclass obj2 (108, 245);

myclass obj3;

obj3= objl+obj2;

cout << "\Sum is" << obj3.m<<endl;
cout << "Sum is "<< obj3.n<<endl;
return O;

Output:

Sum is 194
Sum is 344

Code Debriefing

In this code, we have created a class with a few constructors: one default
and the other parameterized.

In this example, overloading is done using a function declared inside the
class and implemented outside the class.

Here, the binary operator + is overloaded and used with obj1 and obj2.
The result is being stored in ob3 3.

This overloading takes two parameters, and the values stored in the
objects are changed.

The code now displays the changes made. The overloading was
performed successtully.

Summary

Polymorphism provides us with multiple forms of a method with
different signatures but the same name.

Operator overloading is a type of compile-time polymorphism in which
the basic operators we use can also be overloaded to give a functionality
to a user-defined data type.

Operator overloading is done with two types of operators: unary and

binary.

OPERATOR OVERLOADING * 181

= No new overloaded operators can be overloaded again.

= The operators that cannot be overloaded are the scope resolution

operator (: :), sizeof operator, selector or dot operator (.), pointer
symbol (*), and ternary operator (2) because they hold a special and
complex operability.

Operator overloading for binary operators can be done using the friend
function, as well.

Exercises

Theory Questions

1.

What is operator overloading? Explain the importance of operator
overloading.

. List the operators that cannot be overloaded and justify why they cannot

be overloaded.

. What is the operator function? Describe the operator function with

syntax and examples.

. What are the limitations of overloading the unary increment/decrement

operator? How are they overcome?

. Explain the syntax of unary operator overloading. How many arguments

are required in the definition of an overloaded unary operator?

. Explain the syntax of binary operator overloading. How many arguments

are required in the definition of an overloaded binary operator?

Practical Questions

1.

Write a program to overload the unary operator, say ++, for incrementing
the distance in a GPS system. Describe the working model of an
overloaded operator with the same program.

2. Write a program in C++ to overload the unary operator for processing

counters. It should support both upward and downward counting. It
must also support operators for adding two counters and storing the
result in another counter.

3. Write a program in C++ to overload arithmetic operators for

manipulating vectors.

182 ¢ C++ PROGRAMMING FUNDAMENTALS

4. Write a program in C++ to overload new operators and delete operators
to manipulate objects of the student class. The student class must
contain data members, such as char*name, int roll no,and int
branch. The overloaded new operators and delete operators must
allocate memory for the student class object and its data members.

5. Write a program in C++ to manipulate N objects of the Student class.
Overload the subscript operator for bounds checking while accessing it.

MCQ-Based
1. Which is the correct statement about operator overloading in C++?
a. Only arithmetic operators can be overloaded.
b. Associativity and precedence of operators does not change.
c. The precedence of operators is changed after overloading.

d. Only non-arithmetic operators can be overloaded.

2. What is operator overloading in C++?

a. Overriding the operator, using the user-defined meaning for a user-

defined data type
b. Redefining the way the operator works for user-defined types

c. Ability to provide the operators with some special meaning for a user-

defined data type
d. All of the above

3. Which of the following operators cannot be overloaded?
a. * (pointer-to-member operator)
b. :: (scope resolution operator)
c. .= (pointer-to-member operator)

d. All of the above

4. Overloading binary operators using a member function requires
argument(s).
a.2

b. 1

OPERATOR OVERLOADING * 183

c.0
d. 3

. Which of the following operators should be preferred to overloading as
a global function rather than a member method?

a. Postfix ++
b. Comparison Operator
c. Insertion Operator <<
d. prefix ++
. Which of the following operator functions cannot be global (i.e., it must
be a member function)?
a. new
b. delete
c. Conversion operator

d. All of the above

. Which of the following is the correct order for the process of operator
overloading?
i. Define the operator function to implement the required operations.

ii. Create a class that defines the data type that is to be used in the over-
loading operation.

iii. Declare the operator function op() in the public part of the class.
a. 1-i, 2-ii, 3-iii
b. 1-ii, 2-iii, 3-i
c. 1-i, 2-i, 2-iii
d. 1-iii, 2-ii, 3-1
. What will be the output of the following C++ code?

#include <iostream>
#include <string>
using namespace std;
class A

184 + C++ PROGRAMMING FUNDAMENTALS

{ static int a;
public:
void show ()
{ a++;
cout<<"a: "<<a<<endl; }

}i
int A::a = 5;
int main(int argc, char const *argv([])
{
A a;
return 0;

}

a. Error, as a private member a is referenced outside the class
b. Segmentation fault
c. No output

d. Program compiles successfully but gives a runtime error

9. What happens when objects s1 and s2 are added?

string sl = "Hello";
string s2 = "World";
string s3 = (sl+s2).substr(5);

a. Error, because s1+s2 will result in a string and no string has a sub-
str() function

b. Segmentation fault, as two string cannot be added in C++
c. The statements run perfectly.

d. Runtime error

10. In the case of friend-operator-overloaded functions, what is the maxi-
mum number of object arguments a unary-operator-overloaded func-
tion can take?

a. l
b. 2
c.3
d. 0

OPERATOR OVERLOADING * 185

11. In the case of friend-operator-overloaded functions, what is the maxi-
mum number of object arguments a binary-operator-overloaded func-
tion can take?

a. l
b. 2
c. 3
d. 0

12. What will be the output of the following C++ code?
#include <iostream>
#include <string>
using namespace std;

class A

{
static int a;
public:
void show ()

{
at+;
cout<<"a: "<<a<<endl;

}

void operator. ()

{

cout<<"Objects are added\n";

}i
class B

{
public:
}i
int main(int argc, char const *argv[])

{
A al, az;
return 0;

a. Runtime error
b. Runs perfectly

c. Segmentation fault

d. Compile-time error

186 ¢ C++ PROGRAMMING FUNDAMENTALS

MCQ

References

Books

= B. Stroustrup, The C++ Programming Language (4th Edition)
(Addison-Wesley Professional, 2013).

= K. R. Venugopal, Mastering C++ (2nd Edition) (McGraw Hill
Education, July 2017).

= Y. Kanetkar, Let Us C++ (BPB Publications September, 2020).

» Y. Kanetkar, Test Your C++ Skills (BPB Publications March, 2003).
Websites

= Learn CPP, accessed August 2022, https://www.learncpp.com

= Java Point, accessed August 2022, https://www.javatpoint.com

= Codes Cracker, accessed August 2022, https://codescracker.com

= Geeks For Geeks, accessed August 2022, https://www.geeksforgeeks.org

= C Plus Plus, accessed August 2022, hitps://cplusplus.com

= Silly Codes, accessed August 2022, hitps://sillycodes.com

CHAPTER

STRUCTURE AND UNION

9.1

Structure: Declaration and Definition

In C++, classes are one way for user-defined data types to exist. However,
we can also use structure, which is a user-defined data type that groups
different data types together. It can be viewed as an array that stores
similar data types under one name. The way structure stores information is
different from how a class stores it as by default all members of a structure
are possessing public visibility while in a class default visibility if all members
are private.

Features of Structure

Defined using the keyword struct and members access it using the
name.

Memory allocation for a structure in C++ occurs contiguously.

It has data members and functions that are similar to the variables and
functions used elsewhere in C++.

Data members cannot be initialized inside a structure.
Initialization of members can be done using curly braces.

Accessing of members is done using the selector or dot operator.

188 ¢ C++ PROGRAMMING FUNDAMENTALS

= A pointer to a structure in C++ uses the following characters: ->.

= Like arrays, structures of structures can be made in C++.
The syntax for a structure is as follows:

struct {
// Declaration of our struct
//members

}i

The following programs in C++ use classes and help us observe the
difference between a class and a structure.

Code: Class vs Structure in C++

#include <iostream>
using namespace std;
class Student
{
public:
string n;
Student (string n)
{
std::cout << "\nName is " <<n<<endl;
}
Student (const Students sl)
{

std::cout << "\nThis is a member of a class\n" <<endl;
}i
int main() {

Student sl ("Rio");
Student s3(sl);

return O;

Output:

Name is Rio
This is a member of a class

STRUCTURE AND UNiON © 189

Code Debriefing
= In this code, we created a class with a few methods.

= The values’ methods are used to take input for the data members from
the user.

= Here, the constructor is overloaded and used with one object.

= The code displays the changes made. The overloading was performed
successfully.

Code: Working with Structure

finclude <iostream>

using namespace std;

struct OurStructure ({
int x;

char c;

}i

int main ()

struct OurStructure sl;

sl.x = 85;

sl.c = 'G";

cout << "The value is : "<< sl.x << endl;

cout << "The value 1is : "<< sl.c << endl;
cout<<"Size of structure : "<<sizeof (sl)<<endl;

return 0;

Output:

The value is : 85

The value is : G

Size of structure : 9

Code Debriefing
» In this code, we create a structure with a few variables.
= The object of our structure is made to access the members.

» Observe that the size of the whole structure becomes different, as in a
class.

= The code displays the changes made.

190 » C++ PROGRAMMING FUNDAMENTALS

9.2 Accessing a Structure

Structure, a user-defined data type in C++, groups different data types
together. Accessing of members is done using the structure member
operator (.)or using a structure pointer. Here are a few examples depicting
how members are accessed and called upon. These examples also show the
amount of memory (or bytes) occupied by our structure.

Code: Accessing a Structure

#include <iostream>
using namespace std;
struct OurStructure ({
int x;
char c;

i
int main ()
{

struct OurStructure sl;

struct OurStructure s2 = { 240,'S' };

sl.x = 835;

sl.c = 'G";

cout << "The value is : "<< sl.x << endl;

cout << "The value is : "<< sl.c << endl;
cout<<"Size of structure : "<<sizeof (sl)<<endl;
cout << "The value is : "<< s2.x << endl;

cout << "The value is : "<< s2.c << endl;
cout<<"Size of structure : "<<sizeof (s2)<<endl;

return 0;

Output:

The value is : 835
The value is : G

Size of structure : 8
The value is : 240
The value is : S

Size of structure : 8

The value is : 835

The value is : G

Size of structure structure : 8
The value is : 240

STRUCTURE AND UNION @ 191

The value is : S
Size of structure structure : 8

Code Debriefing

» In this code, we create two structures with a few variables. A different
syntax is used for structure creation.

= The object of our structure is made to access the members.

= Observe that the size of the whole structure becomes different, as in a
class.

= The code displays the changes made.

Code: Working with Structures

#include <iostream>
using namespace std;
struct OurStructure {

int x;
char c;

}i

int main ()

{
struct OurStructure sl = { 240,'S' };
struct OurStructure* s2 = &sl;
cout << "The value i1s : "<< s2->x << endl;
cout << "The value i1s : "<< s2->c << endl;
cout<<"Size of structure : "<<sizeof (sl)<<endl;
return 0;

}

Output:

The value is : 240

The value is : S

Size of structure : 8

Code Debriefing

= In this code, we create two structures with a few variables. A different
syntax is used for structure creation.

= The object of our structure is made to access the members.

192 ¢ C++ PROGRAMMING FUNDAMENTALS

» Observe that the size of the whole structure becomes different, as in a
class.

= The code displays the changes made.

9.3 Union

Union that is another user-defined data type in C++. Union groups various
objects and members of different types and bytes together. Structure and
union may seem similar because of their syntax, but they vary in their
memory allocation to members. A union will give data variable memory
space that is equal to the space occupied by the data variable with the
largest size of that respective union.

The syntax for a union is as follows:

union UnionName
{//members

}r
Features

= Defined using the keyword union and members accessed using under
the name

= Memory allocation for a union is determined by the largest member .

= Tt has data members and functions that are similar to the variables and
functions used elsewhere in C++.

= Data members can be initialized and overwritten if the value changes as
the same memory space is affected.

= Accessing of members is done using the selector or dot operator.

= A pointer to a structure in C++ is as follows: ->.

Code: Working with Union

#include <iostream>
using namespace std;
using namespace std;
union OurUnion ({

int x;

char c;

int main ()

union OurUnion ul;
ul.x = 85;

ul.c = '"H';

cout << "The value is
cout << "The value is
cout<<"Size of union
return 0;

Ouput:

The value is : 72
The value is : H
Size of union : 4

Code Debriefing

STRUCTURE AND UNION @ 193

"< ul.x << endl;
"< ul.c << endl;
"<<sizeof (ul)<<endl;

» In this code, we create a union with a few variables.

= Then, the object of our union is made to access the members.

= Observe that the size of the whole union changes, as in a structure.

= The code displays the changes made.

Code:Implementation of a Union data type

#include <iostream>
using namespace std;
using namespace std;
union OurUnion {

int x;

char c;

char name[12];
}i
int main ()
{union OurUnion ul;

ul.x = 8588;

ul.c = 'H';
union OurUnion u?2;
uz.x= 590;
uz2.c= 's' ;

cout << "The value is x
cout << "The value is c

"<< ul.x << endl;
"<< ul.c << endl;

194 « C++ PROGRAMMING FUNDAMENTALS

cout<<"Size of union
cout << "The value is x
cout << "The value is c
cout<<"Size of union
return 0;

Output::

8250
The value is ¢ : H

The value is x

Size of union : 12
The value is x : 595
The value is ¢ : S
Size of union : 12

Code Debriefing

"<<sizeof (ul)<<endl;
"<< u2.x << endl;
"<< u2.c << endl;

"<<sizeof (u2)<<endl;

= In this code, we create a union with a few variables and assigned values

using the dot operator.

= Then, the object of our union is made to access the members.
= Observe that the size of the whole union changes, as in a structure.

= The code displays the changes made.

9.4 Differences Between Structure and Union

Now that we have seen these two user-defined data types in C++, let us
consider how the methods differ from one another. The following table will
help learners determine when and where structure and union can be used

in their C++ program.

Table 9.1 Structures & Unions Difference Table

Structure

Union

Structure is a user-defined data type in C++
that groups different data types together.

Union helps us to group various objects
and members of different types and bytes
together.

Memory allocation for a structure in C++
occurs contiguously.

Memory allocation for a union is determined
by the largest member .

Data members cannot be initialized inside
a structure. This can be done by declaring a
structure.

Data members can be initialized and
overwritten if the value changes, as the same
amount of memory space is affected.

All data members are assigned a unique
memory space in a structure.

All data members share the memory space
equal to the member with the largest size.

STRUCTURE AND UNION © 195

Structure

Union

All data members can be initialized for a
structure.

Only the first data member can be initialized
for a union.

All data members can be accessed together
for a structure.

Accessing of data members can be done only
one at a time.

9.5 Enum in C++

User-defined data types help our C++ program to be more flexible and user
friendly. They make it easier for the viewer to understand the language the
computer wants to speak. Enumeration (enum) is a unique data type in
C++ that allows us to define data types and name elements of our choice to

be considered integral constants.

The syntax for enumeration is as follows:

enum datatypename{enum values list.... };

Code: Using Enumeration

#include <iostream>
using namespace std;
int main ()

{

enum Gender { max, checo=9,lewis, kimi, mick, ocon };

int 1i;

for (i = checo; 1 <= ocon;

cout << 1 << " ";

return 0;

Output:
9 10 11 12 13
Code Debriefing

i++4)

= In this code, we use enum with items.

= The for loop traverses the data structure and displays each member as

an index number.

= The index is +1, and this can be changed depending on the

requirements.

196 -

C++ PROGRAMMING FUNDAMENTALS

Code: Working with Enum

#include <iostream>

using namespace std;

enum weekDays { Sunday, Monday, Tuesday=19, Wednesday,
Thursday, Friday=23, Saturday };

int main ()

{

enum Gender { max, checo=9,lewis, kimi=18, mick, ocon };
int i;
for (i = checo; 1 <= ocon; i++)
cout <K 1 <« " ";
weekDays d;
d= Monday;
cout << "\n The Day of week is " << d+1<<endl;
return 0;

Ouput:

9 10 11 12 13 14 15 16 17 18 19 20
The Day of week is 2

Code Debriefing

In this code, we use enum with items.

The for loop traverses the data structure and displays each member as
an index number.

The index is +1 and, this can be changed depending on the
requirements.

Features of Enumeration

Defined using the keyword enum and elements are accessed using the
name

Memory allocation for all members of enum is the same.

It has data elements and a default position or value assigned that is
similar to an array.

We can change the value of the elements, and the elements following
take up the value as defined.

STRUCTURE AND UNION © 197
Accessing of elements can be done by comparing the switch case, as
they are integral constants.

Enum elements are called enumerators and help simplify the complex

body of code.

Summary

Structure is a user-defined data type in C++ that groups different data
types together.

Union helps us to group various objects and members of different types

and bytes together.
Memory allocation for a structure in C++ occurs contiguously.

In a union, all data members share the memory space equal to the size
of the largest member.

All data members can be initialized for a structure.
Only the first data member can be initialized for a union.

enum or enumeration is a unique data type in C++ that allows us to
define data types and named elements of our choice by assigning names
to integer constants.

Enum elements are called enumerators.

Exercises

Theory Questions

1.

wn

What are structures? Justify their need with an example.

. Why are structures are called heterogeneous data types?

2
3.
4

Explain storage organization of structure variables.

. Write a short note on passing structure type variables to a function,

and the suitability of different parameter passing schemes in different
situations.

. What are unions? Write a program to illustrate the use of a union.
. What are the differences between structures and unions?

. Define enum and its purpose.

198 ¢ C++ PROGRAMMING FUNDAMENTALS

Practical Questions

1. Write a program in C++ for processing admission reports. Use a structure
that has elements representing information such as roll number, name,
date of birth (use a nested structure), and branch allotted. The functions
processing the members of a structure must be a part of a structure. The

format of the report is as follows:

Rollno. Name Date of Birth Branch Allotted

XX XXX dd/mm/yy XXXXXXXXXXX

2. Write a program in C++ that processes the date of birth using
structures. Include the ability to process multiple students’ dates of

birth.

3. Write a program in C++ to process complex numbers. It has to perform
addition, subtraction, multiplication, and division of complex numbers.

Print the results in x+ iy form.

4. Consider the following structure declaration:
struct institution {
struct teacher(
int empl no;

char name[20];
}i

struct student {
int roll no;
char name([15];
}i

}i

What are the values for sizeof(institution), sizeof(teacher), and

sizeof(student)?
MCQ-Based

1. What is the correct output of the given code?
#include <iostream>
#include <math.h>
using namespace std;
struct st {
int A = NULL;
int B = abs (EOF + EOF);

STRUCTURE AND UNION © 199

}S;

int main ()

{
cout << S.A << " " <K S.B;
return 0;

}
a.02

b.00
c.20
d. Error

2. What is the correct output of the given code?
#include <iostream>
using namespace std;
typedef struct{
int A = 10;
int B = 20;
}S;
int main ()
{
cout << S.A << " " K S.B;
return 0;

}

a. Error
b. 10 20
c. 100
d.00

3. What is the correct output of the given code?
#include <iostream>
using namespace std;

typedef struct({
int A;
char* STR;
}S;

int main ()

200 ¢ C++ PROGRAMMING FUNDAMENTALS

S ob = { 10, "india" };

S* ptr;

ptr = &ob;

cout << ptr->A << " " << ptr->STR;

return 0;

}
a. 10 india

b. Blank output

c. Garbage value
d. India 10

4. What is the correct output of the given code?
#include <iostream>
using namespace std;
int main ()
{
typedef struct
{
int A;
char* STR;
} S;
S ob = { 10, "india" };
S* ptr;
ptr = &ob;
cout << ptr->A << " " << ptr->STR;
return 0;

}

a. 10 in
b.10d
c. 10 india
d.10n

5. What is the correct output of the given code?
#include <iostream>
using namespace std;
struct st {
int A;

STRUCTURE AND UNiON @ 201

char CH;
}i
int main ()
struct st s[] = { { 10, 'A' }, { 20, 'B' } };
int X, Y;
X = s[0].A + s[0].CH;
Y = s.A + s.CH;
cout << (X * Y);
return 0;

}
a. 6450

b. 1020
c. 9765
d. Error

6. What is the correct output of the given code?
#include <iostream>
using namespace std;
struct stl {
int A = 10;
struct st2 {
char ch = '"A";
}S;
} SS;
int main ()
{
struct stl* PTR;
int X = 0;
X = PTR->A + PTR->S.ch;
cout << X;
return 0;

}
a. 6450

b. Garbage value
c. Error

d. 0

202 ¢ C++ PROGRAMMING FUNDAMENTALS

7. What is the correct output of the given code ?

#include <iostream>
using namespace std;

struct stl {

int A = 10;

struct st2 {

char ch = 'A';

}S;

} SS;

int main ()

{
struct stl* PTR = &SS;
int X = 0;
X = PTR->A + PTR->S.ch;
cout << X;
return 0;

}
a. 65

b. 75
c. 97
d. 107

8. What will be the output of the following code?

finclude <iostream>
#include <string.h>
using namespace std;
int main() {
int student{
int num;
char name[25];
}
student stu;
stu.num = 123;
strcpy (stu.num, "john");
cout << stu.num << endl;
cout << stu.name << endl;

return 0;

STRUCTURE AND UNION @ 203

a. 123
john

b. john
john

c. compile time error

d. runtime error

9. What will be the output of the following code?
#include <iostream>
using namespace std;
struct Time{
int hours, minutes, seconds;
}

int toSeconds (Time now) ;

int main() {
Time t;
t.hours = 5;
t.minutes = 30;
t.seconds = 45;
cout << "Total seconds: " << toSeconds(t) << endl;

return 0;
}
int toSeconds (Time now) {

return 3600 * now.hours + 60 * now.minutes + now.seconds;

}
a. 19845

b. 20000
c. 15000
d. 19844

10. What will be the output of the following code?

#include <iostream>
using namespace std;
int main () {
struct ShoeType({
string style;
double price;

204 C++ PROGRAMMING FUNDAMENTALS

11.

12.

13.

ShoeType shoel, shoe2;

shoel.style = "Adidas";

shoel.price = 9.99;

cout << shoel.style << "$" << shoel.price;
shoe2 = shoel;

shoe2.price = shoe2.price / 9;

cout << shoe2.style << "$" << shoel2.price;
return O;

}
a. Adidas $ 9.99Adidas $ 1.11

b. Adidas $ 9.99Adidas $ 9.11
c. Adidas $ 9.99Adidas $ 11.11
d. Adidas $ 11.11Adidas $ 11.11

Which of the following is a properly defined structure?
struct {int a;}

a.
b. struct a struct {int a;}

(]

. struct a struct int a;

d. struct a struct {int a;};

Which of the following accesses a variable in structure *b?
a. b->var;

b.b.var;

C. b-var;

d. b>var;

Which of the following are themselves a collection of different data
types?

a. Strings
b. Structures
c. Characters

d. None of the above

14.

15.

16.

17.

18.

STRUCTURE AND UNION © 205

Which operator connects the structure name to its member name?

a. -
b. ->
c. .

d. Both . and ->

Which of the following cannot be a structure member?
a. Function

b. Array

c. Structure

d. None of the above

What is the correct syntax to declare a function foo() that receives an
array of structures in a function?

a. void foo(struct *var);
b. void foo(struct *var[]);
C. void foo(struct var);

d. None of the above

Union differs from structure in the following way:
a. All members are used at the same time.

b. Only one member can be used at a time.

c. Unions cannot have more members.

d. Unions initialize all members as a structure.

The data elements in the structure are also known as what?
a. objects

b. members

c. data

d. objects and data

206 ¢ C++ PROGRAMMING FUNDAMENTALS

19. What will be used when terminating a structure?

20. What will happen when the structure is declared?
a. It will not allocate any memory.
b. It will allocate the memory.
c. It will be declared and initialized.

d. It will be declared.

21. The declaration of the structure is also called a
a. structure creator
b. structure signifier
c. structure specifier

d. structure creator and signifier

22. The size of the following union, where int occupies 4 bytes of memory is

union demo
{
float x;
int vy,
char z[10];
}i

a. 8 bytes
b. 4 bytes
c. 10 bytes
d. 18 bytes

23. Members of a union are accessed as
a. union-name.member

b. union—pointer—>member

STRUCTURE AND UNION © 207

c. Botha&b
d. None of the above

24. Tt is not possible to create an array of pointers to structures.
a. TRUE
b. FALSE
c. May be possible in some situations

d. Cannot give an answer

25. Which of the following statements is true?
a. The user has to explicitly define the numeric value of enumerations.
b. The user has control over the size of enumeration variables.
c. Enumeration can have an effect local to the block, if desired.

d. Enumerations have a global effect throughout the file.

26. sizeof a union gives the size of the longest element in the union.
a. Yes
b. No
c. May be possible in some situations

d. Cannot give an answer

27. What is the similarity between a structure, union, and enumeration?
a. All of them let you define new values.
b. All of them let you define new data types.
c. All of them let you define new pointers.
d. All of them let you define new structures.
28. Which of the following share a similarity in syntax?
1. Union
2. Structure
3. Arrays

4. Pointers

208 -

29.

30.

31.

32.

33.

C++ PROGRAMMING FUNDAMENTALS

a.3and 4
b. 1 and 2
c.2and 3
d. All of the above

The size of a union is determined by size of the
a. first member in the union

b. last member in the union

c. sum of the sizes of all members

d. biggest member in the union

Which operator connects the structure name to its member name?
a. -

b. .

c. Both (b and (¢)

d. None of the above

How can you free the allocated memory?
a. remove(var-name);

b. free(var-name);

c. delete(var-name);

d. dalloc(var-name);

Which of the following accesses a variable in structure b?
a. b->var;

b. . var;

C. b-var;

d. b>var;

Which of the following accesses a variable in structure *b?
a. b->var;

b.v.var;

STRUCTURE AND UNION © 209

C. b-var;
d. b>var;
34. Which of the following is a properly defined structure?
a. struct {int a;}
b. struct a struct {int a;}
C. struct a struct int a;

d. struct a struct {int a;};

35. Which properly declares a variable of structure foo?
a. struct foo;
b. struct foo var;
C. foo;

d. int foo;

36. What is the output of this program?
#include <stdio.h>
struct test {
int x = 0;
char vy = 'A';
}i

int main ()

struct test t;
printf("%d, %c", s.x, s.V);
return 0;

a.0
b. Error
c. garbage value garbage value

d. None of the above

37. What is the output of this program?
#include <stdio.h>
struct test {
int x;
char y;
} test;

210 ¢ C++ PROGRAMMING FUNDAMENTALS

int main ()
{
test.x = 10;
test.y = 'A';
printf ("%d %c", test.x,test.y);
return 0;

}
a. 0.416666666666667

b. garbage value garbage value
c. Compilation Error

d. None of the above

38. What is the output of this program?
#include <stdio.h>
struct result{
char sub[20];
int marks;
}i
void main ()
{
struct result res([] = { {"Maths",100},
{"Science", 90},
{"English", 85}
}i
printf("%$s ", res.sub);
printf ("%d", (*(res+2)) .marks);

}
a. Maths 100

b. Science 85
c. Science 90

d. Science 100

39. What will be the size of the following structure?
struct demo{
int a;
char b;
float c;
}

a. 12

STRUCTURE AND UNION @ 211

b. 8
c. 10
d. 9

40. What is the output of this program?
#include <stdio.h>
void main ()
{
struct demo
char * a;
int n;

i

struct demo p = {"hello", 2015};
struct demo g = p;

printf ("%d", printf("%s",g.a));
}

a. hello

b. 5hello
c. hello5
d. 6hello

41. What is the output of this program?

#include <stdio.h>
int main ()
{
union demo {
int x;
int y;
}i

union demo a = 100;
printf ("%d %d",a.x,a.y);
}

a. 1000
b. 100 100
c.00

d. Compilation Error

212 « C++ PROGRAMMING FUNDAMENTALS

42. What is the output of this program?

#include <stdio.h>
int main ()
{
enum days {MON=-1, TUE, WED=4, THU, FRI, SAT};
printf("sd, %d, %d, %d, %d, %d", MON, TUE, WED, THU, FRI,
SAT) ;
return 0;

}
a.-104567

b.-101234
c.012345
d. Error

43. What is the output of this program?
#include <stdio.h>
int main () {
struct simp
{
int 1 = 6;
char city[] = "chicago";
}i
struct simp sl;
printf ("%d",sl.city);
printf ("%d", sl.i);
return O;

}

a. chicago 6
b. Nothing will be displayed
c. Runtime Error

d. Compilation Error

44. What is the output of this program?
#include <stdio.h>

struct

int i;

45.

46.

STRUCTURE AND UNION @ 213

float ft;
}decl;
int main () {
decl.i = 4;
decl.ft = 7.96623;
printf("%d %.2f", decl.i, decl.ft);
return 0;

}
a. 4797

b. 4 7.96623
c. Compilation error

d. None of the above

What is the output of this program?

void main ()
{
struct bitfields {
int bits 1: 2;
int bits 2: 9;
int bits 3: 6;
int bits 4: 1
}bit;
printf ("%d", sizeof(bit));
}

a. 2
b. 3
c. 4
d. 0

’

What is the output of this program?
#include <stdio.h>
int main () {
struct leader
{
char *lead;
int born;
}i
struct leader 11 = {"Adam ", 1931};
struct leader 12 = 11;

214 C++ PROGRAMMING FUNDAMENTALS

printf ("%s %d", 1l2.lead, l1ll.born);
}

a. Compilation error
b. Garbage value 1931
c. Adam 1931

d. None of the above

MCQ
1.(a)| 2.(a)| 3.(a)| 4.(b)| 5.(a)| 6.(b)| 7.(b)| 8.(a)| 9.(a)|10. (a)
11.(d) | 12. (a) [13.(b) | 14. (c) | 15. (a) | 16. (a) |17. (b) [18. (b) | 19. (c) | 20. (a)
21. (a) | 22. (c) | 23. (c) | 24. (b) | 25. (c) | 26. (a) |27. (b) | 28. (b) [29. (d) | 30. (b)
31. (b) | 32. (b) | 33. (a) | 34. (d) [35. (b) | 36. (b) |37. (b) | 38. (a) | 39. (a) | 40. (¢)
41.(d) | 42. (a) |43. (d) | 44. (a) |45. (b) | 46. (c)
References
Books

= B. Stroustrup, The C++ Programming Language (4th Edition)
(Addison-Wesley Professional, 2013).

= K. R. Venugopal, Mastering C++ (2nd Edition) (McGraw Hill
Education, July 2017).

= Y. Kanetkar, Let Us C++ (BPB Publications September, 2020).

m Y. Kanetkar, Test Your C++ Skills (BPB Publications March, 2003)
Websites

= Learn CPP, accessed August 2022, https://www.learncpp.com

= Codes Cracker, accessed August 2022, https://codescracker.com

= Geeks For Geeks, accessed August 2022, https://www.geeksforgeeks.org

= Udacity, accessed August 2022, https://www.udacity.com

= Scaler, accessed August 2022, https://www.scaler.com

= C Plus Plus, accessed August 2022, https://cplusplus.com

= Silly Codes, accessed August 2022, https://sillycodes.com

CHAPTER

ExcerrioN HANDLING

10.1 Errors and Exceptions

Exceptions in the programming world are runtime abnormal conditions
that lead to either program termination or faulty execution. Errors are
illegal statements or functionality the programmer might have used in their
program. Errors are beyond repair but exceptions can be handled.

Exception

Synchronous Asynchronous

Figure 10.1 Types of exceptions

216 ¢ C++ PROGRAMMING FUNDAMENTALS

Exceptions in C++ are broadly divided into two types:

1. Synchronous: This type of exception can only arise from the throw
statements. For example, accessing an index element that the array might
not have termed an array index generates an out of bounds exception.

2. Asynchronous: This type of exception includes keyboard or input
interrupts while a program is being executed and disrupts the natural
flow of the C++ code. These exceptions are not handled directly but are
managed using the signal concept.

Code: Exception Handling (1)

#include <iostream>

using namespace std;

int main ()

{

int x = 0;

int y=10;

cout << "oops wrong \n"<<y/x<<endl;

}

Output:

00Ops wrong
zsh: floating point exception

Code: Exception Handling (2)

#include <iostream>
using namespace std;
class Parent ({

public:
int p=60;
void showP ()

{

cout<<"\nParent's age 1s " <<p<< endl;

}i

class Child : public Parent
{

public:
int c¢=20;
void showC () {

ExcepTioN HANDLING © 217

cout<< "\nChild's age 1is " <<c<< endl;

}//a syntax error will occur as class declaring syntax 1is not

// being followed
class Grandchild : public Child

{

public:
int g=4;
void showg() {
cout<< "\nGrandchild's age 1is

’

bi

int main() {
Grandchild gl;
gl.showP () ;
gl.showC () ;
gl.showg () ;
return O;

C

Output:

inherit.cpp:25:2: error: expected ‘';’

" <<g<< endl;

after class

}//syntax error will ocur as clas declaring syntax not followed

Code Debriefing

= Asyou can observe from this code, we did not follow the syntax rules in

C++.

= This results in a syntax error message given by the compiler.

= It shows us the line at which error occurred and why the error led to

program termination.

218 ¢ C++ PROGRAMMING FUNDAMENTALS

10.2 Exception Handling

In C++, exceptions are handled using a try-catch block, where we can
throw a particular exception we feel our code might face and handle it in
the block. Let us now get familiar with important keywords we will be using
throughout the exception handling mechanism.

= Try: This block is used to throw our exception. We can try for conditions
and if the conditions are met (true), we throw an exception. A try block
is always followed by a catch block.

= Catch: This block is used when an exception is thrown. It gives what
happens after catching the exception and managing it with an exception
handler. One try block can be followed by multiple catches.

= Throw: This keyword simply throws an exception and does nothing
much beyond that. It is the responsibility of the try-catch block to
handle the exception.

The syntax for the try-catch block is as follows:

try {
// code
throw exceptionName;
}
catch () {
// code
}

Code: Handling Exceptions Using Try-Catch Blocks

#include <iostream>
using namespace std;

int main ()

{

int x = 0;

int y=10;

//cout << "oops wrong \n"<<y/x<<endl;
try {

if (y > 9)
{
throw y;

catch (int y) {

ExcepTioN HANDLING © 219

cout << "\n The Exception thrown has been Caught \n";

}

return 0;

}

Output:
The Exception thrown has been Caught
Code Debriefing

= As you can observe from this code, we use the try-catch block

mechanism to handle the exception.

» The try blockis inside main. If the statement is satisfied, we throw our

exception in the try block.

= The catch block does its work and catches the exception, then prints the

message.

Code: Catching the Exception

#include <iostream>
using namespace std;

int main ()

{

int x = -9;

int y=10;

//cout << "oops wrong \n"<<y/x<<endl;
try {

if (y > 9)
{
throw y;
}
if (x< 0)
{

throw x;

}
catch (int y) |

cout << "\nThe Exception thrown has been Caught \n";

220 ¢ C++ PROGRAMMING FUNDAMENTALS

catch (int x) {

cout << "\nThe Exception thrown has been Caught \n";
}

return 0;

}

Output:
opoverloadll.cpp:23:8: warning: exception of type 'int' will b
eptions]
catch (int x) {

opoverloadll.cpp:20:8: note: for type 'int'
catch (int y) {

1 warning generated.

The Exception thrown has been Caught

Code Debriefing

= As you can observe from this code, we use the try-catch block
mechanism to handle exceptions.

» Inside main, we have a try block. If the statement is satisfied, we throw
our exception in the try block.

= The catch block works in a similar way to a switch case and checks for
relevant parameters thrown towards it.

= This code does its work to catch the exception and prints a message.

10.3 Various Exceptions

C++ has a list of standard exceptions programmers might see often. A few
of them and their functionalities are listed in the following table. They are
all part of the std library and are called upon using the std: :exception

name.
Table 10.1 List of standard exceptions
S.No. Exception About
1. |exception Parent class of all exceptions
2. | logic_error Exception that can be resolved by viewing the code again
logically
3. |out_of range Exception that occurs when a certain value gets beyond the
defined scope
4. | runtime error | Exception that cannot be resolved by viewing the code again

ExcepTioN HANDLING © 221

S.No. Exception About
5. | range_error Exception that occurs when we try to operate on out-of-range
values
6. |overflow error | Exception that occurs when values cannot be contained any
longer
7. |underflow Exception that occurs where values do not meet the
error minimum scope
8. | length_error Exception that can occur where the string values are being
operated on
9. |domain error Exception that can occur if values are assigned out of the
domain
10. |bad alloc Exception that can occur while using a new operator for

memory

10.4 Custom Exceptions in C++

In C++, if we wish to create our own personalized exceptions, we can do so
by inheriting properties from the standard exception class and overriding
its method. The following code depicts how the concept of classes and
inheriting from predefined classes helps while handling and manufacturing
our own exceptions

Code: Using Custom Exceptions

#include <iostream>

using namespace std;

class trial {

}i

int main ()

{

try {

throw trial();

catch (trial obj) {
cout << "\nCaught an exception of a class \n";

222 o C++ PROGRAMMING FUNDAMENTALS

Output:
Caught an exception of a class

Code Debriefing

= Asyou can observe from this code, we created our own exception in
C++ using the class trial.

= Inside main, we throw our exception to the class trial constructors within
the try block.

= The catch block does its work and catches the exception, and then it
prints the message.

= As our exception is a class, we called its data method using the object.

Code: Catching a Custom Exception

#include <iostream>
#include <exception>
using namespace std;
class ourException : public exception
{
public:
char * funcl ()
{

return "\nUser,Please enter an Exception ;
}i

int main ()
{
try
{
throw ourException () ;

}

catch (ourExceptioné& oE)

{
cout<< "\nOur custom exception has been caught" <<endl;
cout<< "Calling function "<<oE.funcl() <<endl;

}
catch (std: :exceptioné& oE) {

}

return O;

ExcepTION HANDLING © 223

Output:

Our custom exception has been caught

Calling function

User, Please enter an Exception

Code Debriefing

As you can observe from this code, we created our own exception by
inheriting properties from the exception parent class.

Inside main, we throw our exception in the try block.

The catch block does its work and catches the exception, and then it
prints a message.

As our exception is a class, we called its data method using the object.

Summary

An exception in programming is an abnormal condition at runtime that
leads to either program termination or faulty execution.

Errors are illegal statements or functionalities the programmer might
have used in their program.

Errors are beyond repair, but exceptions can be handled.

Exceptions are handled using a try-catch block where we can throw a
particular exception.

A try block is used to throw an exception. We can check for conditions,
and if they are met, the program throws an exception.

A catch block is used when an exception is thrown. What happens after
catching the exception occurs in this block.

A try block is always followed by a catch block, and one try block can
be followed by multiple catches.

There are standard exceptions programmers might face often, and these
are part of the std library.

In C++ custom exceptions, we can inherit properties from the standard
exception class and override its methods.

224 « C++ PROGRAMMING FUNDAMENTALS

Exercises

Theory Questions

1

S.
6.

. What are exceptions? What are the differences between synchronous

and asynchronous exceptions?

. Explain the exception handling model of C++ with various constructs

supported by it.

. What is the syntax for indicating a list of exceptions that a function can

raise? What happens if an unspecified exception is raised?

. What happens when an exception is raised in a try block having a few

constructed objects?
What happens when a raised exception is not caught by a catch block?

List the ten rules for handling exceptions successfully.

Practical Questions

1.
2.

Write a program to demonstrate the catching of all exceptions.

Write a program in C++ to compute the square root of a number. The
input value must be tested for validity. If it is negative, should the user-
defined function my_sqrt()raise an exception?

. Write a program in C++ that transfers the control to a user-defined

terminate function when a raised exception is uncaught.

. Write a program in C++ that installs the user-defined unexpected

function to handle exceptions.

. Write a program in C++ that divides two complex numbers. Overload

the divide (/) operator. Can this program handle cases such as division-
by-zero using exceptions?

. Write a program in C++ for matrix multiplication. The matrix

multiplication function should notify the user if the order of the matrix
is invalid using exceptions.

. Write a program in C++ to add two vectors. Each vector object, an

instance of the class Vector, has the dynamic allocation of their data
members. Can this program catch exceptions raised by new operators
and take corrective actions?

ExcepTioN HANDLING © 225

MCQ-Based
1. What is an exception in a C++ program?
a. A problem that arises during the execution of a program
b.A problem that arises during compilation
c. A syntax error

d. A semantic error

2. By default, what does a program do when it detects an exception?
a. Continues running
b. Terminates the program
c. Calls other functions of the program

d. Removes the exception and tells the programmer about an exception

3. Why do we need to handle exceptions?
a. To avoid unexpected behavior of a program during runtime
b. To let compiler remove all exceptions by itself
c. To successfully compile the program

d. To get correct output

4. Where should we place a catch block of the derived class in a try-catch
block?

a. Before the catch block of the base class
b. After the catch block of the base class

c. Anywhere in the sequence of catch blocks
d. After all the catch blocks

5. What is the syntax for catching any type of exceptions?
a. catch (Exception e)
b. catch (...)
c. catch (Exception ALL)
d. catch (ALL)

226 -

6.

10.

C++ PROGRAMMING FUNDAMENTALS

An uncaught exception leads to

a. the termination of the program

b. the successful execution of the program
c. no effect on the program

d. the execution of other functions of the program after it starts

. What is the header file used for exception handling in C++?

a. <cstdlib>
b. <string>
C. <handler>

d. <exception>

. The C++ code that causes abnormal termination/behavior of a program

should be written under the block.

a. try

b. catch
c. finally
d. throw

. Exception handlers are declared with the keyword.

a. try
b. catch

c. throw

d. finally

Which of the following statements are correct about the catch handler?
i. It must be placed immediately after the try block.
ii. It can have more than one parameter.
iii. There must be one, and only one, catch handler for every try block.
iv. There can be multiple catch handlers for a try block.
v. General catch handlers can be kept anywhere after the try block.

11

12.

13.

14.

ExCEPTION HANDLING © 227

a.i,iv, v
b. i, ii, iii
c.i,iv

d.i,ii

. In a nested try-catch block, if the inner catch block gets executed, then

the
a. program stops immediately
b. outer catch block also executes

c. compiler jumps to the outer catch block and executes the remaining
statements of the main () function

d. compiler executes the remaining statements of the outer try-catch
block and then the main () function

If the inner catch block is unable to handle the exception thrown, then

a. the compiler looks for the outer try-catch block
b. the program stops abnormally

c. the compiler will check for the appropriate catch handler of the outer

try block

d. the compiler will not check for the appropriate catch handler of the
outer try block

In nested try-catch blocks, if both the inner and outer catch blocks are
unable to handle the exception thrown, then the

a. compiler executes only main()
b. compiler throws a compile-time error
c. program will run without any interruption

d. program will be terminated abnormally

Which function is invoked when an unhandled exception is thrown?
a. stop ()

b.aborted()

228 ¢ C++ PROGRAMMING FUNDAMENTALS

C. terminate ()

d.abandon()

15. How one can restrict a function to throw particular exceptions only?
a. By defining multiple try-catch blocks inside a function
b. By defining a generic function within a try-catch block
c. By defining a function with throw clauses
d. Not allowed in C++
16. Which function is invoked when we try to throw an exception that is not
supported by a function?
a. indeterminate ()
b. unutilized()
C. unexpected()

d. unpredicted ()

17. The return type of an uncaught exception is
a. int
b. bool
C. char*

d. double

18. Which of the following is true about exception handling in C++?

i. There is a standard exception class in C++ similar to the exception
class in Java.

ii. All exceptions are unchecked in C++, i.e., the compiler does not
check if the exceptions are caught.

iii. In C++, a function can specify the list of exceptions that it can throw
using a comma separated list like the following:

void fun(int a, char b) throw (Exceptionl, Exception2, ..)
a. i, iii

b. i, i, iii

19.

20.

21.

22.

ExcepTION HANDLING © 229

Which alternative can replace the throw statement?
a. for

b. break

c. return

d. exit

What are the disadvantages if we use the return keyword to return error
codes?

a. You have to handle all exceptional cases explicitly.
b. Your code size increases dramatically.
c. The code becomes more difficult to read.

d. All of the above

In a nested try-catch block, if the inner catch block gets executed, then
the

a. program stops immediately
b. outer catch block also executes

c. compiler jumps to the outer catch block and executes remaining state-
ments of the main () function

d. compiler executes the remaining statements of the outer try-catch
block and then the main () function

Where are the exceptions handled?
a. inside the program
b. outside the regular code

c. botha&b

d. none of the above

230 -

23.

24.

25.

26.

27.

C++ PROGRAMMING FUNDAMENTALS

If the inner catch block is unable to handle the exception thrown, then

the
a. program stops abnormally
b. the compiler looks for the outer try-catch block

c. the compiler will check for appropriate catch handler of the outer try
block

d. the compiler will not check for the appropriate catch handler of the
outer try block

Irrespective of the exception occurrence, the catch handler will always
get executed.

a. True

b. False

Before object-oriented exception handling was practiced,

a. no runtime errors occurred

b. programmers could not deal with runtime errors

c. the most popular error-handling method was to throw an exception

d. the most popular error-handling method was to terminate the program

How do we define user-defined exceptions?

a. Inheriting a class functionality

b. Overriding a class functionality

c. Inheriting and overriding an exception class functionality

d. None of the above

Which type of program is recommended to include in a try block?
a. pointer

b. const reference

c. static memory allocation

d. dynamic memory allocation

28.

29.

30.

ExcepTioN HANDLING © 231

We can prevent a function from throwing any exceptions.
a. True

b. False

Catch handlers can have multiple parameters.
a. True

b. False

What is the output of the following C++ code?

#include <iostream>
using namespace std;
int main ()
{
int var = -12;
try {
cout<<"Inside try\n";
if (var < 0)
{
throw var;
cout<<"After throw\n";
}
}
catch (int var) {
cout<<"Exception Caught\n";
}
cout<<"After catch\n";
return O;

a. Inside try

Exception Caught
After catch

b. Inside try

After throw
After catch

c. Inside try

Exception Caught
After throw

232 « C++ PROGRAMMING FUNDAMENTALS

d. Inside try
Exception Caught
After throw
After catch

31. What is the output of this program?
#include<iostream>
using namespace std;
int main ()
{
try {
int* myarray = new int[1000];
cout << "Allocated";
}
catch (exception& LFC) {
cout << "Standard exception: " << LFC.what () << endl;
}

return 0;

}

a. Error
b. Allocated
c. Standard exception

d. Depends on the memory

32. What is the output of the following C++ code?

#include <iostream>
using namespace std;
int main ()
{

try

{

try

throw 20;
}

catch (int n)
{

cout << "Inner Catch\n";

}

catch (int x)

33.

cout << "Outer Catch\n";
}
return 0;

}

a. Inner Catch
b. Outer Catch

c. Inner Catch
Outer Catch

d. Error

What is the output of the following C++ code?
#include <iostream>
using namespace std;
int main ()
{

try

{

try

throw 20;
}

catch (char n)
{

cout << "Inner Catch\n";

}
catch (int x)
{
cout << "Outer Catch\n";
}

return 0;

}
a. Inner Catch
b. Outer Catch

c. Inner Catch
Outer Catch

d. Error

ExcepTioN HANDLING © 233

234 C++ PROGRAMMING FUNDAMENTALS

34. What is the output of the following C++ code?
#include <iostream>
#include <typeinfo>
using namespace std;
class A
{
}i
int main ()
{
char c; float x;
if (typeid(c) !'= typeid(x))
cout << typeid(c) .name() << endl;
cout << typeid(A) .name () ;
return 0;

a. C

1A
b. x

c. Both c & x
d.c

35. What is the output of the following C++ code?

finclude <iostream>
using namespace std;
void Division(const double a, const double Db);
int main ()
{
double opl=0, op2=10;
try
{
Division(opl, op2);
}
catch (const char* Str)
{
cout << "\nBad Operator: " << Str;
}
return O;
}
void Division(const double a, const double b)
{

double res;

ExcepTioN HANDLING © 235

if (b == 0)

throw "Division by zero not allowed";
res = a / b;
cout << res;

}
a.0

b. Bad operator
c. 10
d. 15

36. What is the output of the following C++ code?
#include <stdexcept>
#include <limits>
#include <iostream>
using namespace std;
void MyFunc (char c)
{
if (¢ < numeric limits<char>::max())
return invalid argument;
}
int main ()
{
try
{
MyFunc (256) ;
}
catch(invalid argumenté& e)
{
cerr << e.what () << endl;
return -1;
}
return 0;

}
a. 256

b. Invalid argument

c. Error

d. 246

236 ¢« C++ PROGRAMMING FUNDAMENTALS

37. What is the output of the following C++ code?
#include <iostream>
#include <exception>
using namespace std;
class myexc: public exception
{
virtual const char* what () const throw()
{
return "My exception";
}
} myex;
int main ()
{
try
{
throw myex;
}
catch (exceptioné& e)
{
cout << e.what() << endl;
}
return 0;

}
a. My

b. My exception
c. No exception

d. Exception

38. What is the output of the following C++ code?
finclude <iostream>
finclude <exception>
using namespace std;
int main ()
{
try
{
int* myarray= new int[1000];
cout << "Allocated";
}
catch (exceptioné& e)

{

ExcepTiON HANDLING © 237

cout << "Standard exception: " << e.what() << endl;

}

return 0;

a. Allocated

b. Standard exception:
c. bad_alloc
d. Depends on memory

39. What is the output of the following C++ code?
#include <iostream>
using namespace std;
int main ()
{

char* ptr;

unsigned long int a = (size t(0) / 3);

cout << a << endl;
try
{
ptr = new char[size t(0) / 3];
delete[] ptr;
}
catch(bad alloc &thebadallocation)
{
cout << thebadallocation.what ()
}i
return 0;

}
a.0

b. 2
C. bad alloc

d. depends on compiler

40. What is the output of the following C++ code?
#include <typeinfo>
#include <iostream>
using namespace std;
class shape

{

<< endl;

238 ¢ C++ PROGRAMMING FUNDAMENTALS

public:
virtual void myvirtualfunc() const {}
}i
class mytriangle: public shape
{
public:
virtual void myvirtualfunc () const
{
}i
}i

int main ()

shape shape instance;
shape &ref shape = shape instance;
try
{
mytriangle &ref mytriangle = dynamic cast<mytriangleé&>
(ref shape);
}
catch (bad cast)
{
cout << "Caught: bad cast exception\n";
}
return O;

}
a. Caught standard exception

b. No exception arises
c. Caught: bad_cast exception
d. Caught: cast

41. What is the output of the following C++ code?

#include <typeinfo>
#include <iostream>
using namespace std;
class Test
{

public:

Test () ;

virtual ~Test () ;
}i
int main ()

{

ExcepTioN HANDLING © 239

Test *ptrvar = NULL;
try
{
cout << typeid(*ptrvar) .name () << endl;
}
catch (bad typeid)
{
cout << "The object is null" << endl;
}

return 0;

}

a. No exception arises
b. The object is null
c. Error

d. The object is

42. What is the correct output of the given code?
#include <iostream>
using namespace std;
int main ()

{

try {
int A = 10;
int B = 0;
int C;
if (B == 0)
throw 2;
C =12/ B;

}
catch (int num) {
cout << "Error code: " << num << endl;
}
return 0;

}

a. Error code: 2
b. Syntax error
c. No output

d. Garbage value

240 ¢ C++ PROGRAMMING FUNDAMENTALS

43. What is the correct output of the given code?

#include <iostream>
using namespace std;
int main ()

{

try {
int A = 10;
int B = 0;
int C;
cC=AaA/ B;

}
catch (exception e) {

cout << "Exception generated" << endl;
}

return 0;

}

a. Exception generated

b. Syntax error

c. No output

d. Program crashed at runtime

44. What is the correct output of the given code?

finclude <iostream>
using namespace std;

int main ()
{
try {
int A = 10;
int B = 0;
int C;
if (B == 0)
throw "divide by zero";

CcC =234/ B;

}
catch (char* e) {

cout << "Exception Received: " << e << endl;
}

return 0;

a. Exception received: divide by zero

b. Syntax error
c. No output

d. Program crashed at runtime

ExcepTioN HANDLING © 241

45. What is the correct output of the given code?

#include <iostream>
using namespace std;

int main ()

{
try |

int A =

int B

0;
int C;

if (B == 0)
throw "divide by zero";
C =2/ B;

}

catch (const char* e)
cout << "Exception Received:

}

return 0;

}

a. Exception received: divide by zero

b. Syntax error
c. No output

d. Program crashed at runtime

" << e << endl;

46. What is the correct output of the given code?

#include <iostream>
using namespace std;

int main ()
{
try {

int A = 10;
int B 0;
int C;

242 o C++ PROGRAMMING FUNDAMENTALS

if (B == 0)

throw "Divide by zero";

cC =234/ B;

}

catch (int num) {
cout <<

}

catch (...) {

"Error Code:

" << num << endl;

cout << "Exception received" << endl;

}

return 0;

}

a. Exception received
b. Divide by zero
c. Syntax error

d. No output

47. What is the correct output of the given code?

#include <iostream>
using namespace std;

int main ()
{
try {
int A = 10;
int B = 0;
int C;
if (B == 0) {
Exception E;
throw E;
}
C =24/ B;
}
catch (exception E)

{

cout << "Exception Received" << endl;

return 0;

48.

49.

ExcepTiON HANDLING © 243

a. Exception received

b. Divide by zero

c. Syntax error

d. No output

What is the correct output of the given code snippets?
#include <iostream>

using namespace std;

int main ()

{

try |

int A = 10;

int B = 0;

int C;

if (B == 0) {
exception E;
throw E;

}

C =214/ B;

}
catch (exception E) {

cout << "Exception Received" << endl;
}

return 0;

}

a. Exception Received

b. Divide by zero

c. Syntax error

d. No output

What is the correct output of the given code snippets?

#include <iostream>
using namespace std;

int main ()
{
try {
int A = 10;

244 « C++ PROGRAMMING FUNDAMENTALS

int B = 0;

int C;

if (B == 0) {
bad exception E;
throw E;

}

cC =234/ B;

}
catch (bad exception E) {
cout << "Exception Received" << endl;

return 0;

}

a. Exception Received
b. Divide by zero

c. Syntax error

d. No output

50. What is the correct output of the given code?

#include <iostream>
using namespace std;
int main ()

{

try {

int A = 10;

int B = 0;

int C;

if (B == 0) {
bad exception E;
throw E;

}

C =2/ B;

}
catch (exception E) {
cout << "###Exception Received" << endl;
}
catch (bad exception E) {
cout << "@@ERException Received" << endl;

51.

ExcepTiON HANDLING © 245

return 0;

}
a. ###Exception Received

b. @@@Exception Received
c. Syntax error
d. No output

What is the correct output of the given code?

#include <iostream>
using namespace std;

int main ()

{

try {

int A = 10;

int B = 0;

int C;

if (B == 0) {
bad exception E;
throw E;

}

C=AaA/B;

}
catch (bad exception E) {

cout << "@@EException Received" << endl;
}
catch (exception E) {

cout << "###Exception Received" << endl;
}

return 0;

}
a. #H#Exception Received

b. @@@Exception Received
c. Syntax error

d. No output

246 « C++ PROGRAMMING FUNDAMENTALS

MCQ
1.(a)| 2.(b)| 3.(a)| 4.(a)| 5.(b)| 6.(a)| 7.(d)| 8.(a)| 9.(b)|10. (c)

11.(d) | 12. (¢c) |13.(d) | 14. (c) | 15. (¢) | 16. (c) |17. (b) | 18. (b) | 19. (c) | 20. (d)
21. (d) | 22. (b) | 23. (c) | 24. (c) | 25. (c) | 26. (d) | 27. (a) | 28. (a) | 29. (b) | 30. (a)
31.(b) | 32.(a) |33. (b) | 34. (a) | 35. (a) | 36. (c) |37. (b) | 38. (d) | 39. (a) | 40. (a)
41. (b) | 42. (a) |43.(d) |44. (d) | 45. (a) | 46. (a) | 47. (c) | 48. (a) | 49. (a) | 50. (a)
51. (b)

References

Books

= B. Stroustrup, The C++ Programming Language (4th Edition)
(Addison-Wesley Professional, 2013).

= K. R. Venugopal, Mastering C++ (2nd Edition) (McGraw Hill
Education, July 2017).

= Y. Kanetkar, Let Us C++ (BPB Publications September, 2020).

» Y. Kanetkar, Test Your C++ Skills (BPB Publications March, 2003).
Websites

= Learn CPP, accessed August 2022, https://www.learncpp.com

= Codes Cracker, accessed August 2022, https://codescracker.com

= Roll Bar, accessed August 2022, https://rollbar.com

= Geeks For Geeks, accessed August 2022, https://www.geeksforgeeks.org

= Udacity, accessed August 2022, https://www.udacity.com

= Scaler, accessed August 2022, https://www.scaler.com

= C Plus Plus, accessed August 2022, https://cplusplus.com

= Silly Codes, accessed August 2022, https://sillycodes.com

CHAPTER

FiLE HANDLING

11.1 Files and Streams

Organizing and maintaining our belongings helps us access them whenever
they are needed with ease, and the same is true for our desktop folders and
phone data. All need organizing and efficient handling. In C++, we handle
and organize files, folders, and directories. We can write our own files and
display the items in created files. What exactly is a file in C++? Let us try to
define it in simple terms.

Files

Files created in C++ help to store data onto the hard disk and remain in
the system for later use. This is different from traditional programs, where
our data or objects holding data get deleted after program termination to
reclaim the temporary memory space allotted. Many times, we need our
data to be securely stored in the system so fetching items out of a file
requires less time.

Streams

For the user to enter and provide details or values, we use input streams. A
stream refers to a group of bytes that can be accessed sequentially. There
are two different types of streams. Input streams are used to hold the
input from a user, such as a keyboard. For example, the user might press
any key on the keyboard, even when not asked for it. In a situation like

248 C++ PROGRAMMING FUNDAMENTALS

this, all these keys are saved in the input stream and used later when the
program itself requires it, saving the user energy and your code from any
fault or error. The second type is an output stream, which is used for the
output to a monitor, file, or printer. For example, let’s suppose you need
a printout, but the printer is currently working on another document, so
your data/file waits for its turn to be given as output. To able to use all these
functionalities in your C++ code, you need to include the iostream header
file, which provides the program with a whole hierarchy of classes (multiple
inheritance) to make use of all I/O classes.

Although the iostream class is derived from ios_base, iostream is the
one you will be working directly with. The symbols << or >> are not to
be confused with “greater than” or “less than.” In C++, these are special
operators you will add to your programs in your coding journey.

» The iostreanm class can handle both input and output streams, be it the
user pressing random keys or an alert message to the user not to do so,
all done through one class. It is the base class for all the other I/O stream
classes we will be using throughout this chapter.

» The istrean class is for input streams, and this class is derived from the
iostrean class. The extraction operator (>>) removes values from the
stream created when the user presses keys (whether asked to or not). It
also has functions for input operations like get () and getline ().

= The ostrean class is for output streams and this class is derived from
the iostream class. The insertion operator (<<) is used to put values in
the stream to be displayed on output devices like monitors. It also has
functions for input operations like put () and write ().

= The fstrean class can handle both input and output operations related
to files opening and closing, such as reading particular items of a file or
writing onto a file. It has various functions with special operability.

» The ifstream handles all the file input-related operations and has
various functions with special operability, like get (), getline (),
read (), seekg (), and tellg ().

= The ofstream class can handle input operations related to writing onto a
file. It has various functions with special operability like put (), write (),
seekp (), and tellp ().

= The streambuf class is used to manage the input and output streams
through a pointer, which points to the buffer.

FiLE HANDLING © 249

Code: Working with Files and Streams

finclude <iostream>
finclude <fstream>
using namespace std;
int main ()
{
ofstream ofObj;
string ourline;
ofObj.open ("textFile3.txt");
while (0fOb7j)
{
getline (cin, ourLine);
if (ourlLine == "-1")
break;
cout<< ourLine << endl;
}
0fObj.close () ;
ifstream ifObj;
ifObj.open ("textFile3.txt");
while (1£0b7)
{
getline (1fObj, ourLine);
cout << ourlLine << endl;
}
ifObj.close();
return 0;

Output:

We are learning and improving everyday.
We are learning and improving everyday.

-1
Code Debriefing

= In this code, we used the ofstream class and created its object and a
string value.

= We then used the open method to access our file in open mode.

= Text entered is written onto the file using the i fstream class object.

250 ¢ C++ PROGRAMMING FUNDAMENTALS

= The program then prints the content of the newly written file.

= The close method is called upon to close the file we had opened earlier.

11.2 File Operations

The major steps needed in C++ for file handling are as follows:

Opening a file: This is the first step taken toward file management in C++
and can be done either by passing our file name in the constructor when an
object is created or using the open () method.

The syntax for opening a file is as follows:

void open (const char* ourFileName, ios::openMode mode) ;
or
open () function

Now, various open modes can be activated in C++.

Table 11.1 Types of Open Modes

Serial Mode What it does

Number

1 in This mode is the default while using 1 fstream, and it opens
our file to read.

2 out This mode is the default while using of stream, and it opens
our file to write.

3 ate This mode opens our file, and the pointer faces the end of
the file.

4 binary This mode opens our file in binary form.

5 noreplace This mode will open a file only if it does not exist in the
system.

6 nocreate This mode will open a file only if it exists in the system.

7 trunc This mode will open a file if it already exists, and the items
will be truncated.

8 app This mode will open our file in append mode, and all new

items will be appended at the end of the file.

We can also combine different opening modes by separating each by using

the symbol |, called the logical or symbol.

1. Writing to a file: Done using the ofstream or fstream classes to enter
data onto our created or opened files.

2. Reading a file: Done using the ifstream or £streanm classes to fetch data
from our created or opened files.

FiLe HANDLING ¢ 251

3. Closing a file: This is the last, important step in file handling. At
program termination, the memory is freed automatically. However, as
to not take any chances and risk an item leak, we should always close our

files.
Code: Working with File Operations

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

fstream ourFile;

ourFile.open ("OurFile",ios::out);
if (lourFile)

{

cout<<"File was not created";

}

else

{

cout<<"Our new file has been created";
ourFile.close() ;

}

return 0;

}

Output:
Our new file has been created$%

Code Debriefing

= In this code, we used the £stream class and created its object.

= We used the open method to access our file in open mode.

= The program then prints the message “Our new file has been created.”
= The close method is called upon to close the file we opened earlier.

Code:Working with Text File

#include <iostream>
#include <fstream>
using namespace std;
int main ()

252 « C++ PROGRAMMING FUNDAMENTALS

ofstream ofObj;
string ourline;
ofObj.open ("textFile3.txt");
while (0fOb7j)
{
getline (cin, ourLine);
if (ourLine == "-1")
break;
cout<< ourLine << endl;
}
0fObj.close();
ifstream ifObj;
ifObj.open ("textFile3.txt");
while (1f0b7j)
{
getline (ifObj, ourLine);
cout << ourLine << endl;
}
ifObj.close() ;
return 0;

Output:

We are learning and improving everyday.
We are learning and improving everyday.

-1
Code Debriefing

= In this code, we used the ofstream class and created its object and a
string value.

= We then used the open method to access our file in open mode.
= Text entered is written onto the file using the i fstream class object.
= The program then prints the content of the newly written file.

= The close method is called upon to close the file we had opened earlier.

FiLe HANDLING © 253

11.3 Random Access and Obiject Serialization

Randomly Accessing a File

We have been accessing, opening, and fetching items from a file, either
from the beginning or the end. However, in C++, we can also randomly
access our opened or created files. Random file access means the control is
not given by default to the start or the end of the file, but at any point in the
file. This is done using special file operations that assign the file pointer to
the point we wish to access.

= Seekg (): This function is used for input and g represents get; it will
change the pointer’s position to read.

= seekp (): This function is used for output and p represents post; it will
change the pointer’s position to write.

Both of the above functions take up two parameter offsets that tell how far
the pointer has to move in terms of bytes. The iostream flag tells where the
new start is.

The syntax for randomly accessing a file is as follows:

fileObject seekg(offset number);
fileObject seekp(offset number);

®=0 textFile1.txt

[in C++ for the user to enter and provide details or values we use input streams, by stream here
refereeing to group of bytes that can be accessed sequentially.

Here we are provided with two different types of streams- Input streams used to hold input from a
user, such as a keyboard, a file example, the user might press any key on the keyboard even when not
asked for in a situation like this all these keys saved in the input stream and used later when the
program itself requires it saving the user pressing energy and your code from any fault or error,
second is Output streams used to showcase output by a monitor, a file, or a printer, for example you
needing a printout but is currently working on other document so your data/file waits for its turn to
be given as output .To able to use all this functionalities in your C++ code you need to include

use of all I/0 classes.

Code: Randomly Accessing a File

#include <fstream>
#include <iostream>
#include <string>
using namespace std;
int main ()
{
ifstream 1fObj;
ifObj.open("textFilel.txt");
if (!'1if0bj)
{

254 « C++ PROGRAMMING FUNDAMENTALS

cout << "Oops our file could not be opened\n";
return 1;

string ourItem;

ifObj.seekg(3);

getline (ifObj, ourItem);

cout << ourlItem << '\n';

ifObj.seekg (6, std::ios::cur);

getline (ifObj, ourItem);

cout <<ourItem << '\n';

ifObj.seekg(-10, std::ios::end);

getline (1fObj,ourlItem) ;

cout << ourlItem << '\n';

return 0;
}
Output:
C++ for the user to enter and provide details or values we use input streams, by stream here
refereeing to group of bytes that can be accessed sequentially.
e are provided with two different types of streams— Input streams used to hold input from a u
ser, such as a keyboard, a file example, the user might press any key on the keyboard even wh
en not asked for in a situation like this all these keys saved in the input stream and used 1
ater when the program itself requires it saving the user pressing energy and your code from a
ny fault or error, second is Output streams used to showcase output by a monitor, a file, or
a printer, for example you needing a printout but is currently working on other document so y
our data/file waits for its turn to be given as output .To able to use all this functionaliti
es in your C++ code you need to include iostream header file which provides with a whole hier

archy of classes (multiple inheritance) to make use of all I/0 classes.
ses.

Code Debriefing

= In this code, we used the ifstream class and created its object and a
string value.

= We then used the open method to access our file in open mode.
= The seekg method is used to print the content of the newly written file.

» The getline method helps to print the items of our file line by line, and
it takes two parameters.

Object Serialization

Serialization in C++ programming is the mechanism of converting an object
in our code into a sequence of bytes (also called the stream of data or the
object). This stream can be stored easily and even used for communicating
between systems and sharing information contained in the sequence of
bytes. Deserialization is done to reverse the process of serialization, where
the bytes are converted back to the objects and normal data.

FiLE HANDLING © 255

Summary

Files created in our C++ program help to store data onto the hard disk
and remain in the system for later use.

In C++, for the user to enter and provide details or values, we use input
streams. A stream references a group of bytes that can be accessed
sequentially.

Input streams are used to hold the input from a user, such as a

keyboard.

Output streams are used to showcase output by a monitor, file, or
printer.

In C++ code, you need to include the iostream header file, which
provides the program with a whole hierarchy of classes (multiple
inheritance) to make use of all I/O classes.

The iostream class can handle both input and output streams, even if it
is a user pressing random keys.

The fstream class can handle both input and output operations related
to files opening and closing, like reading.

Opening a file is the first step taken toward file management in C++.
It can be done either by passing a file name in the constructor when an
object is created or using the open () method.

Writing to a file is done using the ofstream or fstream classes to enter
data onto created or opened files.

Reading a file is done using the ifstreamor fstream classes to fetch
data from created or opened files.

Closing a file is the last, important step in file handling.

At program termination, memory is freed automatically. However, as to
not take any chances to have an item leak, we should always close our
files.

Random file access means the control is not given by default to the start
or the end of the file, but at any point in the file. This is done using
special file operations that assign the file pointer to the point we wish to
access.

256 -

C++ PROGRAMMING FUNDAMENTALS
The seekg () function is used for input, and g represents get. It will
change the pointer position to read.

The seekp () function is used for output, and p represents post. It will
change the pointer position to write.

Serialization is the mechanism of converting an object into a sequence
of bytes (also called a stream of data).

Deserialization is also done to reverse the process of serialization, where
the bytes are converted back to the objects and normal data.

Exercises

Theory Questions

1.
2.
3.

What is file handling in C++? Discuss its various aspects.
What streams are required while handling files?

Discuss seek functions and its form in C++.

4. How is random access carried out in a file?

S.
6.
7.

Explain the various modes of opening writing and reading a file?
What is serialization in C++? How is it carried out?

What is deserialization in C++? How is it carried out?

Practical Questions

1
2

. Write a C++ program to maintain a book record using file handling.
. Write a C++ program to maintain house records using file handling.

. Write a C++ program for the registration (signup) process using file

handling.

. Write a C++ program to read and write file operations in file handling.

5. Write a C++ menu-driven program to perform the following actions:

add, modify, append, and display.

. Write a C++ program to store or enter data to a file using file handling.

. Write a C++ program to retrieve information from the file using file

handling.

FiLE HANDLING © 257

8. Write a C++ program to read and display a file using file handling.

9. Write a C++ program to merge two files into a third file using file

handling.
10. Write a C++ program to encrypt files using file handling.
11. Write a C++ program to decrypt files using file handling.

12. Write a C++ program to read and write values through an object using

file handling.

13. Write a C++ program to count digits, letters, and spaces using file han-

dling.

14. Write a C++ program to count words, lines, and total size using file

handling.

15. Write a C++ program to read a text file and write it in another text file

using file handling.

16. Write a C++ program to count the occurrence of a word using file han-

dling.

17. Write a C++ program to read and write student details using file han-

dling.
18. Write a C++ program to manipulate file pointers using file handling.
MCQ-Based
1. By default, all the files are opened in mode.
a. Binary
b. Text

c. Cannot be determined

2. It is not possible to combine two or more file opening modes in the open

() method.
a. True

b. False

3. Which of the following is not a file opening mode?

a. ios::ate

258 ¢ C++ PROGRAMMING FUNDAMENTALS

b. ios: :nocreate
C. ios::noreplace

d. ios::truncate

4. Due to ios::trunc mode, the file is truncated to zero length.

a. True

b. False

5. If we have an object from the ofstream class, then the default mode of
opening the file is

a. ios::in
b. ios::out
C. ios::in|ios::trunc

d.ios::out\ios::trunk

6. is the return type of the open() function.
a. int
b. bool
C. float

d. char*

7. If we have an object from the fstream class, then what is the default
mode of opening the file?

Q. ios::in|ios::out
b.ios::inlios::out\ios::trunc
C. 1os::in|ios::trunc

d. Default mode depends on the compiler

8. To create an output stream, we must declare the stream to be of class

a. ofstream

b. ifstream

10.

11.

12.

13

FiLE HANDLING © 259

C. iostream

d. None of these

. Streams that will be performing both input and output operations must

be declared as class
a. iostream

b. fstream

C. stdstream

d. stdiostream

To perform file I/O operations, we must use the header file.
a. < ifstream>

b. < ofstream>

C. < fstream>

d. Any of these

Which of the following is not used to seek a file pointer?
a. ios::cur
b. ios::set
C. ios::end

d. ios::beg

Which of the following is used to move the file pointer to the start of a
file?

a. ios::cur
b. ios::start
C. ios::first

d. ios::beg

. Which of the following is not used as a file opening mode?

a. ios::trunc

b. ios::binary

260 ¢ C++ PROGRAMMING FUNDAMENTALS

14.

1S5.

16.

17.

18.

C.ios::in

d. ios::ate

Which stream class only writes on files?
a. ofstream

b. ifstream

C. fstream

d. iostream

Which of these is the correct statement about eof () ?

a. Returns true if a file open for reading has reached the next character.
b. Returns true if a file open for reading has reached the next word.

c. Returns true if a file open for reading has reached the end.

d. Returns true if a file open for reading has reached the middle.

Which of the following true about F11E *£p?
a. FILE is a structure, and fp is a pointer to the structure of the FILE type.
b. F1LE is a buffered stream.

c. FILE is a keyword in C++ for representing files, and fp is a variable of

the FILE type.

d. FILE is a stream.

Which of the following methods can be used to open a file in file han-
dling?

a. Using open ()
b. Constructor method

c. Destructor method

d. Both A and B

Which operator is used to insert data into a file?
a. >>

b. <<

C. <

d. None of the above

19. Which is the correct syntax?

a. myfile:open ("example.bin",

ios::out);

b. myfile.open ("example.bin", ios::out);

C. myfile::open ("example.bin",

ios::out);

d.myﬁle.open ("example.bin", ios:out);

20. What is the output of this program?
NOTE

using namespace std;
int main ()

int 1;
char * Db;
ifstream 1i;

i.open ("find.txt", ios
i.seekg (0, ios end) ;
1 = i.tellg();

i.seekg (0, ios beqg) ;
b = new char [1];

i.read (b, 1);
i.close();

cout.write (b, 1);
deletel[] b;
return 0;

}

a. Error
b. find
c. This is find

d. Runtime error

Includes all required header files

binary);

FiLe HANDLING © 261

262 ¢ C++ PROGRAMMING FUNDAMENTALS

21

. What is the output of this program?

NOTE Includes all required header files

22.

23.

using namespace std;

int main ()

{
char fine, course;
cout << "Enter a word: ";
fine = cin.get();

cin.sync();

course = cin.get();

cout << fine << endl;

cout << course << endl;

return 0;

}

a. course
b. fine
c. Returns “fine” and Two letters or numbers from the entered word

d. None of the mentioned

Whatis ios :: trunc used for ?

a. If the file is opened for output operations and it already existed, no
action is taken.

b. If the file is opened for output operations and it already existed, then
anew copy is created.

c. If the file is opened for output operations and it already existed, its
previous content is deleted and replaced by the new one.

d. None of the above

What will be the output of the following program?

NOTE Includes all required header files

using namespace std;

int main ()

{
ofstream ofile;
ofile.open ("find.txt");

FiLE HANDLING © 263

ofile << "letsfindcourse" << endl;

cout << "Data written to file" << endl;
ofile.close();

return 0;

}

a. Compile error

b. Runtime error

1732

c. The program prints ““letsfindcourse™ in the file find.txt

d. None of the above

24. What is the output of this program?

NOTE Includes all required header files

using namespace std;
int main ()
{
char fine, course;
cout << "Enter a word: ";
fine = cin.get();
cin.sync();
course = cin.get();
cout << fine << endl;
cout << course << endl;
return 0;

}

a. course
b. fine
c. Returns fine and 2 letters or numbers from the entered word

d. None of the above

25. What is the output of this program?
NOTE Includes all required header files

using namespace std;
int main ()
{

ofstream outfile ("find.txt");

264 C++ PROGRAMMING FUNDAMENTALS

for (int 1 = 0; 1 < 70; 1i++) {
outfile << 1i; outfile.flush{();
}

cout << "Done";
outfile.close();
return 0;

}

a. Done
b. Error
c. Runtime error

d. None of the above

26. What is the output of this program?
NOTE Includes all required header files

using namespace std;
int main ()
{
int p = 1000;
double g = 3.14;
cout << p;
cout << endl;
cout << g << endl << p * q;
endl (cout);
return O;

}
a. 1000

b. 3.14
c. 3140
d. All of the above

27. Which of the following is true about the following program
NOTE Includes all required header files

using namespace std;
int main ()
{

char i;

streambuf * p;

ofstream of ("find.txt");
pbuf = of.rdbuf();

do { 1 = cin.get();

p —-> sputc(i);

} while (i !'= ".");
of.close();

return 0; }

a. insertion operator
b. $ symbol
c. dot operator

d. none of the above

28. What will be the output of this program?
NOTE Includes all required header files

using namespace std;
int main () {
int p = 10;
double g = 1.14;
cout << p + g;
endl (cout);
return 0;

}
a. 10

b.1.14
c. 11.14
d. All of the above

29. What will be the output of this program?
NOTE Includes all required header files

using namespace std;
int main () {
FILE *fp;
char x[10247;
fp = fopen("find.txt", "r");
// "Mary and Brit" x[0] = getc(fp);
fseek (fp, 0, SEEK END);

FiLE HANDLING © 265

266 -

30.

31.

32.

C++ PROGRAMMING FUNDAMENTALS

fseek (fp, -7L, SEEK CUR);
fgets(x, 6, fp);

puts (x) ;

return 0;

}

a. Mary

b. Harry

c. Chris

d. Brit

In fopen (), the open mode “wx” is sometimes preferred over “w”
because

i. Use of wx is more efficient.

ii. If w is used, the old contents of the file are erased and a new empty

file is created. When wx is used, fopen () returns NULL if the file
already exists.

a. Only i

b. Only ii

c. Both i and ii

d. None of the above

Which member function is used to determine whether the stream
object is currently associated with a file?

a. is open
b. Buf
C. String

d. None of the above

getc () returns EOF when

a. End of files is reached

b. When getc () fails to read a character
c. Both A and B

d. None of the above

33.

34.

35.

36.

37.

FiLE HANDLING © 267

fseek () should be preferred over rewind () mainly because

a. In rewind (), there is no way to check if the operations were com-
pleted successfully

b. rewind () does not work for empty files

c. rewind () does work for empty files

d. All of the above

Which function is used to return to the first position back from the end
of a file object?

a. seekg

b. seekp

c. Both seekg and seekp
d. None of the above

Which among following is used to open a file in binary mode?
a. ios:app

b. ios::out

C. ios::in

d. ios::binary

How can we get to the position at the nth byte of fileObject?
a. fileObject.seekg('filename',n);

b. fileObject.seekg(n, 'filename');

C. fileObject.seekg(n);

d.ﬁleObject.seekg(n, ios::app);:

Where is a file temporarily stored before a read or write operation is
performed in C++7?

a. RAM

b. Notepad

c. Buffer

d. Hard disk

268 ¢ C++ PROGRAMMING FUNDAMENTALS

MCQ
1.b)| 2.b)| 3.(d)| 4.(a)| 5.(d)| 6.b)| 7.(d)| 8.(a)| 9.(b)]|10.(c)
11. (b) |12.(d) | 13. (a) | 14. (a) | 15. (c) | 16. (a) | 17. (d) | 18. (b) | 19. (b) | 20. (d)
21. (c) | 22. (¢) | 23. (c) | 24. (a) | 25. (b) | 26. (d) | 27. (d) | 28. (d) | 29. (d) | 30. (b)
31.(a) [32.(c) | 33.(a) | 34. (a) | 35.(d) | 36. (c) | 37. (c)
References
Books

= B. Stroustrup, The C++ Programming Language (4th Edition)
(Addison-Wesley Professional, 2013).

= K. R. Venugopal, Mastering C++ (2nd Edition) (McGraw Hill
Education, July 2017).

= Y. Kanetkar, Let Us C++ (BPB Publications September, 2020).

» Y. Kanetkar, Test Your C++ Skills (BPB Publications March, 2003).
Websites

= Learn CPP, accessed August 2022, https://www.learncpp.com

= Codes Cracker, accessed August 2022, https://codescracker.com

= Geeks For Geeks, accessed August 2022, https://www.geeksforgeeks.org

= Udacity, accessed August 2022, https://www.udacity.com

= Scaler, accessed August 2022, https://www.scaler.com

= C Plus Plus, accessed August 2022, https://cplusplus.com

= Silly Codes, accessed August 2022, https://sillycodes.com

Symbols
(~) tilde, 84
A

Abstraction, 5

Access specifiers, 99-100

American National Standard Institute

(ANSI), 2

Arrays and Strings, 43-58
Multi-Dimensional, 51, 51-52
Operations, 45-50

Assembly code, 11

Asynchronous, 216

B

Base address, 59

Basic Play in C++, 19-42
Comments, 22-23
Conversion, 25-27
DefiningFunctions, 36-37

Literals, constants, and qaualifiers, 19-20

Loops, 28-32
Operators and types, 23-25
Stream-Based 10, 20-22
Binary operators, 24
Boolean, 9

C

C++
delete, 90
New, 90

C++ and Beyond, 1-18
Basics, 7
Execution flow, 11
Origin of, 1-2

Use, 2
Catch, 218
C & C++ differences, 37-38
Character, 9
Characteristics
Destructors, 84-85
Static keyword, 89
Character literals, 19

Class, 4
Base, 6, 97
Child, 98

Derived, 6, 98
Fstream, 248
Ifstream, 248
Instance, 4
Tostream, 21, 248
Istream, 21, 248
Ofstream, 248
Ostream, 21, 248
Parent, 97
Streambuf, 248
Sub, 98
Super, 97
Classes in C++, 77-96
Class methods, 87-89
Making, 77-78
Code reusability, 125
Compiler, 11
Conditional statement, 32
Constant, 19
Constructor
Default, 79-80
Parameterized, 82
Constructor calling, 124-125

INDEX

270 « INDEX

Constructors & Destructors
Difference table, 86

Copy
Constructor, 82-84

D

Data abstraction, 5
Debugging, 11
Delete operator, 91
Dereferenced, 59
Deserialization, 254
Diamond problem, 114
Direct Data Members

Private, 99

Protected, 99

Public, 99
Double floating point, 9
Dynamic and static binding, 142-145
Dynamic binding, 7
Dynamic memory allocation, 90

E

Efficiency, 126
Encapsulated, 4
Encapsulation, 4
Enumeration, 47
Enumerators, 197
Escape characters, 20
Exception, 215-246
Custom, 221-222
Errors, 215-217
Handling, 218-220
Various, 220-221
Extensibility, 126
Extraction operator, 248
Extraction operator (>>), 21

F

Felidae, 77
File handling, 247-268
Object serialization, 253-254
Operations, 250-252
Random Access, 253-254
Files, 247
Files and Streams, 247-250
Floating point, 9

Floating Point, 9

Formal parameters, 36
Function, 3, 36
Function declaration, 36

G
Garbage collection, 90

H
Handling, 218

Increment operator, 2
Inheritance, 6, 97-138
Hierarchical, 117-118
Hybrid, 122-124
Implementing, 125-127
Multilevel, 109-110
Multiple, 111-112
Single, 107-108
Virtual, 114-115
Inheritance Modes
Private, 102
Public, 101-102
Input streams, 20, 247
Insertion operator (<<), 21, 248
Integer, 8
lostream header file, 21

J

Jump statements, 33
K

Keywords, 7, 27

L

Late binding, 7

Linker, 11

Literal constants (or literals), 19
Loader, 12

M

Machine code, 11
Mapping of inheritance types, 107
Message passing, 6
Method

Close, 250, 251, 252
Display, 171
Getline, 254
input(), 178
Length(), 44
open(), 250
Open, 251, 252, 254
Seekg, 254
Sizeof, 47
values(), 169-170, 173
Modifiers, 9
Modular, 2
Multi-line comment, 23

N

New operator, 91
Null pointers, 60

(0]

Object Oriented Programming (OOP), 1
Open modes, 250
Operator overloading, 167-186
Binary operators, 174-179
Friend function, 179
Unary operators, 171-174
Output streams, 20

P

Parameterized constructor, 82

Pass by Reference, 37

Pass by Value, 37

Passing, 64

Pointer, 44

Pointers, 59-76
Arrays, 66-69
Casting and Passing, 63-66
Declaration and Initialization, 59-62
Use, 70-71

Polymorphism, 5, 139-166
Function overriding, 149-153
Interface and implementation, 145-149
Namespaces, 157

Pre-processor, 11

Procedural programming, 4

programming language

Pasca, COBAL, C, Fortan, 4
Programming language

C, C++, Java, C#, 3
Pros and cons, 71
Pure virtual function, 147

Q

Qualifier, 20
R

Random file access, 253
Runtime, 7

S

Scope resolution, 88
Search
Binary, 49
Linear, 48
Serialization, 254
Source code, 7
Standard exceptions, 220-221
Standard stream, 21
Stream, 20
Stream objects
Cin, 21
Clog, 21
Cout, 21
Err, 21
Streams, 247
String, 52
String functions, 53
Structural programming, 3
Structure, 125, 187
Union, 192-194
Structure and union, 187-214
Accessing, 190-192
Declaration, 187-189
Definition, 187-189
Differences, 194-195
Synchronous, 216
Syntax and Functionality, 53

T

Ternary operators, 24
This Pointer, 86-87

INDEX @ 271

272 « INDEX

Throw, 218 \"
Traversing, 48
Traversing 1D array, 45
Try, 218

Typecasting, 63

Type conversion, 25

Variables, 7
declaration, 7
definition, 7
Various programming paradigms
Object oriented, 4
U Procedural, 4
Structural programming, 34
Virtual function, 147
Void, 9

Unary operators, 23, 171
Union, 192

	Cover
	Title
	Copyright

	Contents
	Preface

	Acknowledgments

	Chapter 1 C++ and Beyond
	Introduction
	1.1 The Origin of C++
	1.2 Why Use C++?
	1.3 Various Programming Paradigms
	1.3.1 Structural Programming
	1.3.2 Procedural Programming
	1.3.3 Object Oriented Programming

	1.4 C++ Basics

	1.4.1 Variables

	1.4.2 Data Types

	1.4.3 Data Modifiers

	1.t C++ Execution Flow

	Summary

	Exercises

	Theory Questions
	MCQ-Based
	Practical Application

	References

	Books

	Websites

	Chapter 2 Basic Play in C++
	2.1 Literals, Constants, and Qualifiers
	2.2 Stream-Based IO
	2.3 Comments

	2.4 Operators and Types
	2.4.1 Types of Operators in C++

	2.5 Type Conversion

	2.6 Keywords

	2.7 Loops in C++

	2.9 Control Statements

	2.9 Defining Functions
	2.9.1 Why Use Functions?

	2.10 C vs. C++
	Summary

	Exercises

	Theory Questions
	MCQ-Based
	Practical Questions

	References

	Books

	Websites

	Chapter 3
Arrays and Strings
	3.1 What is an Array?
	3.1.1 Ways to Declare Arrays
	3.1.2 Ways to Access Array Members
	3.1.3 Traversing a 1D Array

	3.2
Operations on an Array
	3.2.1 Passing an Array to Functions
	3.2.2
Finding the Length
	3.2.3
Enum in C++
	3.2.4
Searching

	3.3 Multi-Dimensional Array
	3.4
Strings
	3.5 String Functions
	Summary

	Exercises

	Theory Questions

	MCQ-Based

	Practical Questions

	References

	Books

	Websites

	Chapter 4
Pointers in C++
	4.1 Introduction

	4.2
Pointers: Declaration and Initialization
	4.3
Casting and Passing Pointers
	4.3.1
Typecasting
	4.3.2 Passing

	4.4 Using Pointers with Arrays

	4.5
Pointer Use
	Summary

	Exercises

	Theory Questions

	Practical Questions

	MCQ-Based

	References

	Books

	Websites

	Chapter 5 Classes in C++
	5.1 Class Making
	5.2 Constructors and Destructors
	5.3 The This Pointer
	5.4
Class Methods
	5.5 The static Keyword

	5.6
Memory Management and Garbage Collection in C++
	Summary

	Exercises

	Theory Questions

	Practical Questions

	MCQ-Based

	References

	Books

	Websites

	Chapter 6 Inheritance
	6.1 Introduction

	6.2 Inheritance
	6.2.1 Access Specifiers
	6.2.2 Inheritance Modes

	6.3 Types of Inheritance
	6.4 Constructor Calling
	6.5 Implementing Inheritance
	Summary

	Exercises

	Theory Questions

	Practial Questions

	MCQ-Based

	References

	Books

	Websites

	Chapter 7 Polymorphism
	7.1 Introduction

	7.2 Dynamic vs. Static Binding

	7.3 Interface and Implementation
	7.4 Function Overriding and Overloading

	7.5 Friend and Generic Functions

	7.5.1 Friend Functions

	7.5.2 Generic Functions

	7.6 Namespaces
	Summary

	Exercises

	Theory Questions
	Practical Questions

	MCQ-Based

	References

	Books

	Websites

	Chapter 8 Operator Overloading
	8.1 Basics

	8.2 How to Overload an Operator?
	8.3 Overloading Unary Operators
	8.4 Overloading Binary Operators
	8.5 Overloading by Friend Function
	Summary

	Exercises

	Theory Questions

	Practical Questions
	MCQ-Based

	References

	Books

	Websites

	Chapter 9
Structure and Union
	9.1 Structure: Declaration and Definition

	9.2 Accessing a Structure

	9.3 Union

	9.4 Differences Between Structure and Union
	9.5 Enum in C++
	Summary

	Exercises

	Theory Questions
	Practical Questions
	MCQ-Based

	References

	Books

	Websites

	Chapter 10
Exception Handling
	10.1 Errors and Exceptions
	10.2 Exception Handling
	10.3 Various Exceptions
	10.4 Custom Exceptions in C++
	Summary

	Exercises

	Theory Questions

	Practical Questions

	MCQ-Based

	References

	Books

	Websites

	Chapter 11
File Handling
	11.1 Files and Streams

	11.2
File Operations
	11.3
Random Access and Object Serialization
	Summary

	Exercises

	Theory Questions
	Practical Questions
	MCQ-Based

	References

	Books

	Websites

	Index

